期刊文献+
共找到58,195篇文章
< 1 2 250 >
每页显示 20 50 100
Variogram modelling optimisation using genetic algorithm and machine learning linear regression:application for Sequential Gaussian Simulations mapping
1
作者 André William Boroh Alpha Baster Kenfack Fokem +2 位作者 Martin Luther Mfenjou Firmin Dimitry Hamat Fritz Mbounja Besseme 《Artificial Intelligence in Geosciences》 2025年第1期177-190,共14页
The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of... The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of geostatistical analysis,particularly in mineral exploration.The study combines GA and machine learning to optimise variogram parameters,including range,sill,and nugget,by minimising the root mean square error(RMSE)and maximising the coefficient of determination(R^(2)).The experimental variograms were computed and modelled using theoretical models,followed by optimisation via evolutionary algorithms.The method was applied to gravity data from the Ngoura-Batouri-Kette mining district in Eastern Cameroon,covering 141 data points.Sequential Gaussian Simulations(SGS)were employed for predictive mapping to validate simulated results against true values.Key findings show variograms with ranges between 24.71 km and 49.77 km,opti-mised RMSE and R^(2) values of 11.21 mGal^(2) and 0.969,respectively,after 42 generations of GA optimisation.Predictive mapping using SGS demonstrated that simulated values closely matched true values,with the simu-lated mean at 21.75 mGal compared to the true mean of 25.16 mGal,and variances of 465.70 mGal^(2) and 555.28 mGal^(2),respectively.The results confirmed spatial variability and anisotropies in the N170-N210 directions,consistent with prior studies.This work presents a novel integration of GA and machine learning for variogram modelling,offering an automated,efficient approach to parameter estimation.The methodology significantly enhances predictive geostatistical models,contributing to the advancement of mineral exploration and improving the precision and speed of decision-making in the petroleum and mining industries. 展开更多
关键词 Variogram modelling genetic algorithm(ga) Machine learning Gravity data Mineral exploration
在线阅读 下载PDF
Optimization of Operating Parameters for Underground Gas Storage Based on Genetic Algorithm
2
作者 Yuming Luo Wei Zhang +7 位作者 Anqi Zhao Ling Gou Li Chen Yaling Yang Xiaoping Wang Shichang Liu Huiqing Qi Shilai Hu 《Energy Engineering》 2025年第8期3201-3221,共21页
This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Pr... This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Previous research primarily focused on integrating reservoir,wellbore,and surface facility constraints,often resulting in broad constraint ranges and slow model convergence.To solve this problem,the present study introduces additional constraints on maximum withdrawal rates by combining binomial deliverability equations with material balance equations for closed gas reservoirs,while considering extreme peak-shaving demands.This approach effectively narrows the constraint range.Subsequently,a collaborative optimization model with maximum gas production as the objective function is established,and the model employs a joint solution strategy combining genetic algorithms and numerical simulation techniques.Finally,this methodology was applied to optimize operational parameters for Gas Storage T.The results demonstrate:(1)The convergence of the model was achieved after 6 iterations,which significantly improved the convergence speed of the model;(2)The maximum working gas volume reached 11.605×10^(8) m^(3),which increased by 13.78%compared with the traditional optimization method;(3)This method greatly improves the operation safety and the ultimate peak load balancing capability.The research provides important technical support for the intelligent decision of injection and production parameters of gas storage and improving peak load balancing ability. 展开更多
关键词 Underground gas storage operational parameter optimization extreme peak-shaving constraints genetic algorithm MODEL
在线阅读 下载PDF
Hybrid genetic algorithm for parametric optimization of surface pipeline networks in underground natural gas storage harmonized injection and production conditions
3
作者 Jun Zhou Zichen Li +4 位作者 Shitao Liu Chengyu Li Yunxiang Zhao Zonghang Zhou Guangchuan Liang 《Natural Gas Industry B》 2025年第2期234-250,共17页
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject... The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS. 展开更多
关键词 Underground natural gas storage Surface injection and production pipeline Parameter optimization Hybrid genetic algorithm
在线阅读 下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
4
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection Support VECTOR machine (SVM) RECURSIVE feature ELIMINATION (RFE) genetic algorithm (ga) Parameter SELECTION
暂未订购
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
5
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
原文传递
Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism 被引量:9
6
作者 Sun Yijie Shen Gongzhang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第6期540-549,共10页
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm ... To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front. 展开更多
关键词 multi-objective optimization genetic algorithms DIVERSITY HYBRIDIZATION CROSSOVER
原文传递
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
7
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSga)-II
在线阅读 下载PDF
Novel methodology for casting process optimization using Gaussian process regression and genetic algorithm 被引量:4
8
作者 Yao Weixiong Yang Yi Zeng Bin 《China Foundry》 SCIE CAS 2009年第3期232-240,共9页
High pressure die casting (HPDC) is a versatile material processing method for mass-production of metal parts with complex geometries,and this method has been widely used in manufacturing various products of excellent... High pressure die casting (HPDC) is a versatile material processing method for mass-production of metal parts with complex geometries,and this method has been widely used in manufacturing various products of excellent dimensional accuracy and productivity. In order to ensure the quality of the components,a number of variables need to be properly set. A novel methodology for high pressure die casting process optimization was developed,validated and applied to selection of optimal parameters,which incorporate design of experiment (DOE),Gaussian process (GP) regression technique and genetic algorithms (GA). This new approach was applied to process optimization for cast magnesium alloy notebook shell. After being trained,using data generated by PROCAST (FEM-based simulation software),the GP model approximated well with the simulation by extracting useful information from the simulation results. With the help of MATLAB,the GP/GA based approach has achieved the optimum solution of die casting process condition settings. 展开更多
关键词 high pressure DIE CASTING PROCESS optimization numerical simulation gaUSSIAN PROCESS genetic algorithm
在线阅读 下载PDF
GA-iForest: An Efficient Isolated Forest Framework Based on Genetic Algorithm for Numerical Data Outlier Detection 被引量:4
9
作者 LI Kexin LI Jing +3 位作者 LIU Shuji LI Zhao BO Jue LIU Biqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期1026-1038,共13页
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith... With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method. 展开更多
关键词 outlier detection isolation tree isolated forest genetic algorithm feature selection
在线阅读 下载PDF
FPGA PLACEMENT OPTIMIZATION BY TWO-STEP UNIFIED GENETIC ALGORITHM AND SIMULATED ANNEALING ALGORITHM 被引量:6
10
作者 Yang Meng A.E.A. Almaini Wang Pengjun 《Journal of Electronics(China)》 2006年第4期632-636,共5页
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it... Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool. 展开更多
关键词 genetic algorithm ga Simulated Annealing (SA) PLACEMENT FPga EDA
在线阅读 下载PDF
Kriging Surrogate-Based Genetic Algorithm Optimization for Blade Design of a Horizontal Axis Wind Turbine 被引量:7
11
作者 Nantiwat Pholdee Sujin Bureerat Weerapon Nuantong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期261-273,共13页
Horizontal axis wind turbines are some of the most widely used clean energy generators in the world.Horizontal axis wind turbine blades need to be designed for optimization in order to maximize efficiency and simultan... Horizontal axis wind turbines are some of the most widely used clean energy generators in the world.Horizontal axis wind turbine blades need to be designed for optimization in order to maximize efficiency and simultaneously minimize the cost of energy.This work presents the optimization of new MEXICO blades for a horizontal axis wind turbine at the wind speed of 10 m/s.The optimization problem is posed to maximize the power coefficient while the design variables are twist angles on the blade radius and rotating axis positions on a chord length of the airfoils.Computational fluid dynamics was used for the aerodynamic simulation.Surrogate-assisted optimization was applied to reduce computational time.A surrogate model called a Kriging model,using a Gaussian correlation function along with various regression models,was applied while a genetic algorithm was used as an optimizer.The results obtained in this study are discussed and compared with those obtained from the original model.It was found that the Kriging model with linear regression gives better results than the Kriging model with second-order polynomial regression.The optimum blade obtained in this study showed better performance than the original blade at a low wind speed of 10 m/s. 展开更多
关键词 Wind turbine OPTIMIZATION KRIGING genetic algorithms gaUSSIAN
在线阅读 下载PDF
An Improved Hybrid Genetic Algorithm for Chemical Plant Layout Optimization with Novel Non-overlapping and Toxic Gas Dispersion Constraints 被引量:8
12
作者 徐圆 王振宇 朱群雄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期412-419,共8页
New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In... New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution. 展开更多
关键词 plant layout non-overlapping constraints toxic gas dispersion genetic algorithm
在线阅读 下载PDF
Combined Novel Gate Level Model and Critical Primary Input Sharing for Genetic Algorithm Based Maximum Power Supply Noise Estimation
13
作者 田志新 刘勇攀 杨华中 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第9期1375-1380,共6页
A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces com... A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces computation time by 10.7% compared with previous methods. Furthermore,a primary input critical factor model that captures the extent of primary inputs' PSN contribution is formulated. Based on these models,a novel niche genetic algorithm is proposed to estimate PSN more effectively. Compared with general genetic algorithms, this novel method can achieve up to 19.0% improvement on PSN estimation with a much higher convergence speed. 展开更多
关键词 power supply noise gate level model niche genetic algorithm
在线阅读 下载PDF
GENETIC ALGORITHMS AND GAME THEORY FOR HIGH LIFT DESIGN PROBLEMS IN AERODYNAMICS 被引量:7
14
作者 PériauxJacques WangJiangfeng WuYizhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第1期7-13,共7页
A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timiz... A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies. 展开更多
关键词 gaME theory genetic algorithms multi-ob-jective aerodynamic optimization 基因算法 博奕论 气动优化 翼型
在线阅读 下载PDF
Gaussian fitting based optimal design of aircraft mission success space using multi-objective genetic algorithm 被引量:4
15
作者 Yuan GAO Yongliang TIAN +1 位作者 Hu LIU Xue SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3318-3330,共13页
In order to obtain the optimized aircraft design concept which meets the increasingly complex operation environment at the conceptual design stage,System-of-systems(So S)engineering must be considered.This paper propo... In order to obtain the optimized aircraft design concept which meets the increasingly complex operation environment at the conceptual design stage,System-of-systems(So S)engineering must be considered.This paper proposes a novel optimization method for the design of aircraft Mission Success Space(MSS)based on Gaussian fitting and Genetic Algorithm(GA)in the So S area.First,the concepts in the design and evaluation of MSS are summarized to introduce the Contribution to System-of-Systems(CSS)by using a conventional effectiveness index,Mission Success Rate(MSR).Then,the mathematic modelling of Gaussian fitting technique is noted as the basis of the optimization work.After that,the proposed optimal MSS design is illustrated by the multiobjective optimization process where GA acts as the search tool to find the best solution(via Pareto front).In the case study,a simulation system of penetration mission was built.The simulation results are collected and then processed by two MSS design schemes(contour and neural network)giving the initial variable space to GA optimization.Based on that,the proposed optimization method is implemented under both schemes whose optimal solutions are compared to obtain the final best design in the case study. 展开更多
关键词 EVALUATION gaussian fitting genetic algorithm Mission success space Neural network System-of-systems
原文传递
Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China 被引量:5
16
作者 Lin Chen Weibing Lin +3 位作者 Ping Chen Shu Jiang Lu Liu Haiyan Hu 《Journal of Earth Science》 SCIE CAS CSCD 2021年第4期828-838,共11页
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import... A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area. 展开更多
关键词 porosity prediction well logs back propagation neural network genetic algorithm Ordos Basin Yanchang Formation
原文传递
Investigate the kinetics of coke solution loss reaction with an alkali metal as a catalyst based on the improved genetic algorithm 被引量:3
17
作者 Zhao Lei Yunhe Zhang Ping Cui 《International Journal of Coal Science & Technology》 EI 2018年第4期430-438,共9页
The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to ... The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to eliminate the external and inteirial diffusion, respectively. Then, the improved method combining with the least square and the genetic algorithm was proposed to solve the homogeneous model and the shrinking core model. It was found that the improved genetic algorithm method has good stability by studying the fitness function at each generation. In the homogeneous model, the activation energy with and without sodium carbonate was 54.89 and 95.56 kJ/mol, respectively. And. the activation energy with and without sodium carbonate in the shrinking core model was 49.83 and 92.18 kJ/mol, respectively. Therefore, it was concluded that the sodium carbonate has the catalytic action. In addition, results showed that the estimated conversions were agreed well with the experimental ones, which indicated that the calculated kinetic parameters were valid and the proposed method was successfully developed. 展开更多
关键词 COKING KINETIC Improved genetic algorithm ALKALI metal CATALYST
在线阅读 下载PDF
Optimization of Process Parameters for Cracking Prevention of UHSS in Hot Stamping Based on Hammersley Sequence Sampling and Back Propagation Neural Network-Genetic Algorithm Mixed Methods 被引量:1
18
作者 menghan wang zongmin yue lie meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第2期31-39,共9页
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B... In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible. 展开更多
关键词 HOT STAMPING CRACKING Hammersley SEQUENCE sampling BACK-PROPAgaTION genetic algorithm
在线阅读 下载PDF
OPTIMIZATION OF THE BIPED ROBOT GAIT USING GENETIC ALGORITHM 被引量:1
19
作者 窦瑞军 马培荪 《Journal of Shanghai Jiaotong university(Science)》 EI 2001年第2期187-190,共4页
Based on the 7-link dynamic model in the sagittal plane and the 5-link dynamic model in the lateral plane, the parametric gait of the biped robot is designed using walking velocity, step length and height of the hip. ... Based on the 7-link dynamic model in the sagittal plane and the 5-link dynamic model in the lateral plane, the parametric gait of the biped robot is designed using walking velocity, step length and height of the hip. According to the condition of the stability, body swings forward and backward to dynamically balance in sagittal plane and the whole biped swings left and right to dynamically balance in lateral plane. And the genetic algorithm is applied to obtain the optimal parameters on condition of keeping dynamic stability and the minimizing of the value of the dynamic balance. 展开更多
关键词 BIPED parametric gait gait optimization genetic algorithm
在线阅读 下载PDF
Optimization of FX-70 refrigerant evaporative heat transfer and fluid flow characteristics inside the corrugated tubes using multi-objective genetic algorithm 被引量:2
20
作者 Mirollah Hosseini Hamid Hassanzadeh Afrouzi +4 位作者 Sina Yarmohammadi Hossein Arasteh Davood Toghraie AJafarian Amiri Arash Karimipour 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2142-2151,共10页
In this study,the heat transfer optimization(evaporation)and the specification of the FX-70 zeotropic refrigerant flow inside a corrugated pipe have been investigated.Despite the low HTC(HTC),this type of refrigerant ... In this study,the heat transfer optimization(evaporation)and the specification of the FX-70 zeotropic refrigerant flow inside a corrugated pipe have been investigated.Despite the low HTC(HTC),this type of refrigerant is highly applicable in low or medium temperature engineering systems during the evaporation process.To eliminate this defect,high turbulence and proper mixing are required.Therefore,using heat transfer(HT)augmentation methods will be necessary and effective.In order to find the most favorable operating conditions that lead to the optimum combination of pressure drop(PD)and HTC,empirical data,neural networks,and genetic algorithms(GA)for multi-objective(MO)(NSGA II)are used.To investigate the mentioned cases,the geometric parameters of corrugated pipes,vapor quality,and mass velocity of refrigerant were studied.The results showed that with vapor quality higher than 0.8 and corrugation depth and pitch of 1.5 and 7 mm,respectively,we would achieve the desired optimum design. 展开更多
关键词 OPTIMIZATION genetic algorithm Neural network Corrugated tube FX-70 refrigerant
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部