期刊文献+
共找到357篇文章
< 1 2 18 >
每页显示 20 50 100
Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO
1
作者 TANG Chenyue LI Zeshen +1 位作者 CHEN Zihan Howard H.YANG 《ZTE Communications》 2025年第1期53-62,共10页
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ... The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices. 展开更多
关键词 activity detection channel estimation inverse problem score-based generative model massive MIMO
在线阅读 下载PDF
An inverse design method for supercritical airfoil based on conditional generative models 被引量:13
2
作者 Jing WANG Runze LI +4 位作者 Cheng HE Haixin CHEN Ran CHENG Chen ZHAI Miao ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期62-74,共13页
Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learnin... Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learning.A Conditional Variational Auto Encoder(CVAE)and an integrated generative network CVAE-GAN that combines the CVAE with the Wasserstein Generative Adversarial Networks(WGAN),are conducted as generative models.They are used to generate target wall Mach distributions for the inverse design that matches specified features,such as locations of suction peak,shock and aft loading.Qualitative and quantitative results show that both adopted generative models can generate diverse and realistic wall Mach number distributions satisfying the given features.The CVAE-GAN model outperforms the CVAE model and achieves better reconstruction accuracies for all the samples in the dataset.Furthermore,a deep neural network for nonlinear mapping is adopted to obtain the airfoil shape corresponding to the target wall Mach number distribution.The performances of the designed deep neural network are fully demonstrated and a smoothness measurement is proposed to quantify small oscillations in the airfoil surface,proving the authenticity and accuracy of the generated airfoil shapes. 展开更多
关键词 Conditional Variational AutoEncoder(CVAE) Deep learning generative Adversarial Networks(GAN) generative models Inverse design Supercritical airfoil
原文传递
Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models
3
作者 Dennis Hein Staffan Holmin +4 位作者 Timothy Szczykutowicz Jonathan S.Maltz Mats Danielsson Ge Wang Mats Persson 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期98-111,共14页
Deep learning(DL)has proven to be important for computed tomography(CT)image denoising.However,such models are usually trained under supervision,requiring paired data that may be difficult to obtain in practice.Diffus... Deep learning(DL)has proven to be important for computed tomography(CT)image denoising.However,such models are usually trained under supervision,requiring paired data that may be difficult to obtain in practice.Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling.In particular,using the estimated unconditional score function of the prior distribution,obtained via unsupervised learning,one can sample from the desired posterior via hijacking and regularization.However,due to the iterative solvers used,the number of function evaluations(NFE)required may be orders of magnitudes larger than for single-step samplers.In this paper,we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models(PFGM)++.By hijacking and regularizing the sampling process we obtain a single-step sampler,that is NFE=1.Our proposed method incorporates posterior sampling using diffusion models as a special case.We demonstrate that the added robustness afforded by the PFGM++framework yields significant performance gains.Our results indicate competitive performance compared to popular supervised,including state-of-the-art diffusion-style models with NFE=1(consistency models),unsupervised,and non-DL-based image denoising techniques,on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare. 展开更多
关键词 Deep learning Photon-counting CT DENOISING Diffusion models Poisson flow generative models
在线阅读 下载PDF
Designing natural product-like virtual libraries using deep molecule generative models 被引量:1
4
作者 Yibo Li Xin Zhou +1 位作者 Zhenming Liu Liangren Zhang 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2018年第7期451-459,共9页
Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggab... Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggable chemical space. Here, deep learning-based molecule generative model, which is a recent technique in de novo molecule design, was applied to generate virtual libraries with NP-like properties. Results demonstrated that the model was effective in generating molecules that highly resemble NPs. Moreover, the model was also found to be capable of generating NP-like molecules that were also easy to synthesize, significantly increasing the practical value of the compound library. 展开更多
关键词 Natural product Deep learning generative model Virtual library design
原文传递
Experimental demonstration of reconstructing quantum states with generative models
5
作者 Xuegang Li Wenjie Jiang +9 位作者 Ziyue Hua Weiting Wang Xiaoxuan Pan Weizhou Cai Zhide Lu Jiaxiu Han Rebing Wu Chang-Ling Zou Dong-Ling Deng Luyan Sun 《Science Bulletin》 2025年第10期1572-1575,共4页
With the rapid development of quantum devices across various platforms[1–4],reconstructing quantum many-body states from experimentally measured data posts a crucial challenge.Straightforward quantum state tomography... With the rapid development of quantum devices across various platforms[1–4],reconstructing quantum many-body states from experimentally measured data posts a crucial challenge.Straightforward quantum state tomography(QST)is only applicable for small systems[5],since the required classical computing resources,such as the number of measurements and the memory size,grow exponentially as the system size increases. 展开更多
关键词 quantum state tomography qst quantum many body states classical computing resources classical computing resourcessuch generative models exponential growth experimentally measured data quantum devices
原文传递
A brief introductory review to deep generative models for civil structural health monitoring
6
作者 Furkan Luleci F.Necati Catbas 《AI in Civil Engineering》 2023年第1期1-11,共11页
The use of deep generative models(DGMs)such as variational autoencoders,autoregressive models,flow-based models,energy-based models,generative adversarial networks,and diffusion models has been advantageous in various... The use of deep generative models(DGMs)such as variational autoencoders,autoregressive models,flow-based models,energy-based models,generative adversarial networks,and diffusion models has been advantageous in various disciplines due to their high data generative skills.Using DGMs has become one of the most trending research topics in Artificial Intelligence in recent years.On the other hand,the research and development endeavors in the civil structural health monitoring(SHM)area have also been very progressive owing to the increasing use of Machine Learning techniques.As such,some of the DGMs have also been used in the civil SHM field lately.This short review communication paper aims to assist researchers in the civil SHM field in understanding the fundamentals of DGMs and,consequently,to help initiate their use for current and possible future engineering applications.On this basis,this study briefly introduces the concept and mechanism of different DGMs in a comparative fashion.While preparing this short review communication,it was observed that some DGMs had not been utilized or exploited fully in the SHM area.Accordingly,some representative studies presented in the civil SHM field that use DGMs are briefly overviewed.The study also presents a short comparative discussion on DGMs,their link to the SHM,and research directions. 展开更多
关键词 Deep generative models Structural health monitoring generative adversarial networks Diffusion models Energy-based models Flow-based models
原文传递
Combining transformer and 3DCNN models to achieve co-design of structures and sequences of antibodies in a diffusional manner
7
作者 Yue Hu Feng Tao +3 位作者 Jiajie Xu Wen-Jun Lan Jing Zhang Wei Lan 《Journal of Pharmaceutical Analysis》 2025年第6期1406-1408,共3页
AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com... AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models. 展开更多
关键词 advanced algorithm diffusion generative models dcnn epitope targeting antibody design complementary determining regions complementary determining regions cdrs transformer models
在线阅读 下载PDF
Generative discovery of safer chemical alternatives using diffusion modeling:A case study in green solvent design for cyclohexane/benzene extractive distillation
8
作者 Zhichao Tan Kunsen Lin +1 位作者 Youcai Zhao Tao Zhou 《Journal of Environmental Sciences》 2025年第8期390-401,共12页
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin... Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research. 展开更多
关键词 Chemical alternatives Inverse design Green solvent design generative models
原文传递
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
9
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC Molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
A Deep Collaborative Neural Generative Embedding for Rating Prediction in Movie Recommendation Systems
10
作者 Ravi Nahta Nagaraj Naik +1 位作者 Srivinay Swetha Parvatha Reddy Chandrasekhara 《Computer Modeling in Engineering & Sciences》 2025年第7期461-487,共27页
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films... The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality. 展开更多
关键词 Cold start problem recommender systems METADATA deep learning collaborative filtering generative model
在线阅读 下载PDF
A Generative Sky Image-Based Two-Stage Framework for Probabilistic Photovoltaic Power Forecasting
11
作者 Chen Pan ChangGyoon Lim 《Computer Modeling in Engineering & Sciences》 2025年第12期3747-3781,共35页
Solar forecasting using ground-based sky image offers a promising approach to reduce uncertainty in photovoltaic(PV)power generation.However,existing methods often rely on deterministic predictions that lack diversity... Solar forecasting using ground-based sky image offers a promising approach to reduce uncertainty in photovoltaic(PV)power generation.However,existing methods often rely on deterministic predictions that lack diversity,making it difficult to capture the inherently stochastic nature of cloud movement.To address this limitation,we propose a new two-stage probabilistic forecasting framework.In the first stage,we introduce I-GPT,a multiscale physics-constrained generative model for stochastic sky image prediction.Given a sequence of past sky images,I-GPT uses a Transformer-based VQ-VAE.It also incorporates multi-scale physics-informed recurrent units(Multi-scale PhyCell)and dynamically weighted fuses physical and appearance features.This approach enables the generation of multiple plausible future sky images with realistic and coherent cloud motion.In the second stage,these predicted sky images are fed into an Image-to-Power U-Net(IP-U-Net)to produce 15-min-ahead probabilistic PV power forecasts.In experiments using our dataset,the proposed approach significantly outperforms deterministic,other stochastic,multimodal,and smart persistence baselines models,achieving a superior reliability–sharpness trade-off.It attains a Continuous Ranked Probability Score(CRPS)of 2.912 kW and a Winkler Score(WS)of 33.103 kW on the test set and CRPS of 2.073 kW and WS of 22.202 kW on the validation set.Translating to 35.9%and 42.78%improvement in predictive skill over the smart persistence model.Notably,our method excels during rapidly changing cloud-cover conditions.By enhancing both the accuracy and robustness of short-term PV forecasting,the framework provides tangible benefits for Virtual Power Plant(VPP)operation,supporting more reliable scheduling,grid stability,and risk-aware energy management. 展开更多
关键词 Solar forecasting sky image generative model stochastic sky image prediction dynamic weighted fusion virtual power plant
在线阅读 下载PDF
Encoder-Guided Latent Space Search Based on Generative Networks for Stereo Disparity Estimation in Surgical Imaging
12
作者 Guangyu Xu Siyuan Xu +4 位作者 Siyu Lu Yuxin Liu Bo Yang Junmin Lyu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 2025年第12期4037-4053,共17页
Robust stereo disparity estimation plays a critical role in minimally invasive surgery,where dynamic soft tissues,specular reflections,and data scarcity pose major challenges to traditional end-to-end deep learning an... Robust stereo disparity estimation plays a critical role in minimally invasive surgery,where dynamic soft tissues,specular reflections,and data scarcity pose major challenges to traditional end-to-end deep learning and deformable model-based methods.In this paper,we propose a novel disparity estimation framework that leverages a pretrained StyleGAN generator to represent the disparity manifold of Minimally Invasive Surgery(MIS)scenes and reformulates the stereo matching task as a latent-space optimization problem.Specifically,given a stereo pair,we search for the optimal latent vector in the intermediate latent space of StyleGAN,such that the photometric reconstruction loss between the stereo images is minimized while regularizing the latent code to remain within the generator’s high-confidence region.Unlike existing encoder-based embedding methods,our approach directly exploits the geometry of the learned latent space and enforces both photometric consistency and manifold prior during inference,without the need for additional training or supervision.Extensive experiments on stereo-endoscopic videos demonstrate that our method achieves high-fidelity and robust disparity estimation across varying lighting,occlusion,and tissue dynamics,outperforming Thin Plate Spline(TPS)-based and linear representation baselines.This work bridges generative modeling and 3D perception by enabling efficient,training-free disparity recovery from pre-trained generative models with reduced inference latency. 展开更多
关键词 Medical image analysis generative modeling endoscopic 3D reconstruction disparity estimation surgical navigation
在线阅读 下载PDF
Analysis of height and diameter growth patterns in Sakhalin fir seedlings competing with evergreen dwarf bamboo and deciduous vegetation using generalized additive models
13
作者 Hisanori Harayama Takeshi Yamada +1 位作者 Mitsutoshi Kitao Ikutaro Tsuyama 《Journal of Forestry Research》 2025年第5期76-89,共14页
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam... The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas. 展开更多
关键词 Abies sachalinensis Competition Crown cover Forest floor cover Generalized additive models(GAM) Relative growth rate
在线阅读 下载PDF
Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise
14
作者 Jeongsu Park Moohong Min 《Computer Modeling in Engineering & Sciences》 2025年第12期3913-3948,共36页
Time series anomaly detection is critical in domains such as manufacturing,finance,and cybersecurity.Recent generative AI models,particularly Transformer-and Autoencoder-based architectures,show strong accuracy but th... Time series anomaly detection is critical in domains such as manufacturing,finance,and cybersecurity.Recent generative AI models,particularly Transformer-and Autoencoder-based architectures,show strong accuracy but their robustness under noisy conditions is less understood.This study evaluates three representative models—AnomalyTransformer,TranAD,and USAD—on the Server Machine Dataset(SMD)and cross-domain benchmarks including the SoilMoisture Active Passive(SMAP)dataset,theMars Science Laboratory(MSL)dataset,and the Secure Water Treatment(SWaT)testbed.Seven noise settings(five canonical,two mixed)at multiple intensities are tested under fixed clean-data training,with variations in window,stride,and thresholding.Results reveal distinct robustness profiles:AnomalyTransformermaintains recall but loses precision under abrupt noise,TranAD balances sensitivity yet is vulnerable to structured anomalies,and USAD resists Gaussian perturbations but collapses under block anomalies.Quantitatively,F1 drops 60%–70%on noisy SMD,with severe collapse in SWaT(F1≤0.10,Drop up to 84%)but relative stability on SMAP/MSL(Drop within±10%).Overall,generative models exhibit complementary robustness patterns,highlighting noise-type dependent vulnerabilities and providing practical guidance for robust deployment. 展开更多
关键词 Time series anomaly detection robustness evaluation generative AI models AnomalyTransformer TranAD USAD noise injection cross-domain datasets(SMD SMAP MSL SWaT)
在线阅读 下载PDF
New insights on generalized heat conduction and thermoelastic coupling models
15
作者 Yue HUANG Lei YAN +1 位作者 Hua WU Yajun YU 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1533-1550,共18页
With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi... With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory. 展开更多
关键词 generalized heat conduction thermoelastic coupling transient response generalized Cattaneo-Vernotte(CV)model generalized Green-Naghdi(GN)model
在线阅读 下载PDF
Generative Adversarial Networks:Introduction and Outlook 被引量:59
16
作者 Kunfeng Wang Chao Gou +3 位作者 Yanjie Duan Yilun Lin Xinhu Zheng Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期588-598,共11页
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver... Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence. 展开更多
关键词 ACP approach adversarial learning generative adversarial networks(GANs) generative models parallel intelligence zero-sum game
在线阅读 下载PDF
Benchmarking deep learning-based models on nanophotonic inverse design problems 被引量:11
17
作者 Taigao Ma Mustafa Tobah +1 位作者 Haozhu Wang L.Jay Guo 《Opto-Electronic Science》 2022年第1期37-51,共15页
Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.... Photonic inverse design concerns the problem of finding photonic structures with target optical properties.However,traditional methods based on optimization algorithms are time-consuming and computationally expensive.Recently,deep learning-based approaches have been developed to tackle the problem of inverse design efficiently.Although most of these neural network models have demonstrated high accuracy in different inverse design problems,no previous study has examined the potential effects under given constraints in nanomanufacturing.Additionally,the relative strength of different deep learning-based inverse design approaches has not been fully investigated.Here,we benchmark three commonly used deep learning models in inverse design:Tandem networks,Variational Auto-Encoders,and Generative Adversarial Networks.We provide detailed comparisons in terms of their accuracy,diversity,and robustness.We find that tandem networks and Variational Auto-Encoders give the best accuracy,while Generative Adversarial Networks lead to the most diverse predictions.Our findings could serve as a guideline for researchers to select the model that can best suit their design criteria and fabrication considerations.In addition,our code and data are publicly available,which could be used for future inverse design model development and benchmarking. 展开更多
关键词 inverse design PHOTONICS machine learning neural networks generative models
在线阅读 下载PDF
Generative Neural Network Based Spectrum Sharing Using Linear Sum Assignment Problems
18
作者 Ahmed BZaky Joshua Zhexue Huang +1 位作者 Kaishun Wu Basem MElHalawany 《China Communications》 SCIE CSCD 2020年第2期14-29,共16页
Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such... Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such problems usually consume time and memory,especially for large-size problems.Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems,especially the generative model of the deep neural networks.In this work,we propose a resource allocation deep autoencoder network,as one of the promising generative models,for enabling spectrum sharing in underlay device-to-device(D2D)communication by solving linear sum assignment problems(LSAPs).Specifically,we investigate the performance of three different architectures for the conditional variational autoencoders(CVAE).The three proposed architecture are the convolutional neural network(CVAECNN)autoencoder,the feed-forward neural network(CVAE-FNN)autoencoder,and the hybrid(H-CVAE)autoencoder.The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques,such as the Hungarian algorithm,due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time.Moreover,the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques. 展开更多
关键词 autoencoder linear sum assignment problems generative models resource allocation
在线阅读 下载PDF
Functional generalized estimating equation model to detect glaucomatous visual field progression
19
作者 Sanghun Jeong Hwayeong Kim +4 位作者 Sangwoo Moon EunAh Kim Hojin Yang Jiwoong Lee Kouros Nouri-Mahdavi 《International Journal of Ophthalmology(English edition)》 2026年第2期302-311,共10页
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:... AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG. 展开更多
关键词 functional generalized estimating equation model primary open angle glaucoma perimetric progression
原文传递
Diagnostics in generalized nonlinear models based on maximum L_q-likelihood estimation 被引量:1
20
作者 徐伟娟 林金官 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期106-110,共5页
In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood e... In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method. 展开更多
关键词 maximum Lq-likelihood estimation generalized nonlinear regression model case-deletion model generalized Cook distance likelihood distance difference of deviance
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部