期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bidirectional Background Modeling for Video Surveillance 被引量:2
1
作者 Chih-Yang Lin Yung-Chen Chou 《Journal of Electronic Science and Technology》 CAS 2012年第3期232-237,共6页
Traditional background model methods often require complicated computations, and are sensitive to illumination and shadow. In this paper, we propose a block-based background modeling method, and use our proposed metho... Traditional background model methods often require complicated computations, and are sensitive to illumination and shadow. In this paper, we propose a block-based background modeling method, and use our proposed method to combine color and texture characteristics. Suppression and relaxation are the two key strategies to resist illumination changes and shadow disturbance. The proposed method is quite efficient and is capable of resisting illumination changes. Experimental results show that our method is suitable for real-word scenes and real-time applications. 展开更多
关键词 Background modeling gaussianmixture modeling motion detection.
在线阅读 下载PDF
Multiple Model Filtering in the Presence of Gaussian Mixture Measurement Noises 被引量:1
2
作者 张永安 周荻 段广仁 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第4期229-234,共6页
A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance ... A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance as the interacting multiple model filter at the price ofless computational cost. Numerically robust implementation of the filter is presented to meetpractical applications. An example on bearings-only guidance demonstrates the effect of the proposedalgorithm. 展开更多
关键词 state estimation multiple model filter interacting multiple model gaussianmixture target tracking bearings-only guidance
在线阅读 下载PDF
On essential topics of BYY harmony learning: Current status, challenging issues, and gene analysis applications 被引量:4
3
作者 Lei XU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第1期147-196,共50页
As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- ... As a supplementary of [Xu L. Front. Electr. Electron. Eng. China, 2010, 5(3): 281-328], this paper outlines current status of efforts made on Bayesian Ying- Yang (BYY) harmony learning, plus gene analysis appli- cations. At the beginning, a bird's-eye view is provided via Gaussian mixture in comparison with typical learn- ing algorithms and model selection criteria. Particularly, semi-supervised learning is covered simply via choosing a scalar parameter. Then, essential topics and demand- ing issues about BYY system design and BYY harmony learning are systematically outlined, with a modern per- spective on Yin-Yang viewpoint discussed, another Yang factorization addressed, and coordinations across and within Ying-Yang summarized. The BYY system acts as a unified framework to accommodate unsupervised, su- pervised, and semi-supervised learning all in one formu- lation, while the best harmony learning provides novelty and strength to automatic model selection. Also, mathe- matical formulation of harmony functional has been ad- dressed as a unified scheme for measuring the proximity to be considered in a BYY system, and used as the best choice among others. Moreover, efforts are made on a number of learning tasks, including a mode-switching factor analysis proposed as a semi-blind learning frame- work for several types of independent factor analysis, a hidden Markov model (HMM) gated temporal fac- tor analysis suggested for modeling piecewise stationary temporal dependence, and a two-level hierarchical Gaus- sian mixture extended to cover semi-supervised learning, as well as a manifold learning modified to facilitate au- tomatic model selection. Finally, studies are applied to the problems of gene analysis, such as genome-wide asso- ciation, exome sequencing analysis, and gene transcrip- tional regulation. 展开更多
关键词 Bayesian Ying-Yang (BYY) harmonylearning harmony functional automatic model selec-tion Gaussian mixture hidden Markov model (HMM)gated temporal factor analysis hierarchical gaussianmixture manifold learning semi-supervised learning semi-blind learning genome-wide association exome se-quencing analysis gene transcriptional regulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部