期刊文献+
共找到1,774篇文章
< 1 2 89 >
每页显示 20 50 100
Physics-Informed Gaussian Process Regression with Bayesian Optimization for Laser Welding Quality Control in Coaxial Laser Diodes
1
作者 Ziyang Wang Lian Duan +2 位作者 Lei Kuang Haibo Zhou Ji’an Duan 《Computers, Materials & Continua》 2025年第8期2587-2604,共18页
The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise co... The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise control of process parameters to suppress optical power loss.However,the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise.To address this challenge,a physics-informed(PI)and data-driven collaboration approach for welding parameter optimization is proposed.First,thermal-fluid-solid coupling finite element method(FEM)was employed to quantify the sensitivity of welding parameters to physical characteristics,including residual stress.This analysis facilitated the identification of critical factors contributing to optical power loss.Subsequently,a Gaussian process regression(GPR)model incorporating finite element simulation prior knowledge was constructed based on the selected features.By introducing physics-informed kernel(PIK)functions,stress distribution patterns were embedded into the prediction model,achieving high-precision optical power loss prediction.Finally,a Bayesian optimization(BO)algorithm with an adaptive sampling strategy was implemented for efficient parameter space exploration.Experimental results demonstrate that the proposedmethod effectively establishes explicit physical correlations between welding parameters and optical power loss.The optimized welding parameters reduced optical power loss by 34.1%,providing theoretical guidance and technical support for reliable CLD packaging. 展开更多
关键词 Coaxial laser diodes laser welding physics-informed gaussian process regression Bayesian optimization
在线阅读 下载PDF
A novel GNSS imaging method through velocity uncertainty based on Gaussian process regression and its evaluation
2
作者 Jie Ding Xiaohui Zhou +3 位作者 Hua Chen Xingyu Zhou Linyu He Weiping Jiang 《Geodesy and Geodynamics》 2025年第5期569-578,共10页
Global Navigation Satellite System(GNSS)imaging method(GIM)has been successfully applied to global regions to investigate vertical land motion(VLM)of the Earth's surface.GNSS images derived from conventional GIM m... Global Navigation Satellite System(GNSS)imaging method(GIM)has been successfully applied to global regions to investigate vertical land motion(VLM)of the Earth's surface.GNSS images derived from conventional GIM method may present fragmented patches and encounter problems caused by excessive smoothing of velocity peaks,leading to difficulty in short-wavelength deformation detection and improper geophysical interpretation.Therefore,we propose a novel GNSS imaging method based on Gaussian process regression with velocity uncertainty considered(GPR-VU).Gaussian processing regression is introduced to describe the spatial relationship between neighboring site pairs as a priori weights and then reweight velocities by known station uncertainties,converting the discrete velocity field to a continuous one.The GPR-VU method is applied to reconstruct VLM images in the southwestern United States and the eastern Qinghai-Xizang Plateau,China,using the GNSS position time series in vertical direction.Compared to the traditional GIM method,the root-mean-square(RMS)and overall accuracy of the confusion matrix of the GPR-VU method increase by 5.0%and 14.0%from the 1°×1°checkerboard test in the southwestern United States.Similarly,the RMS and overall accuracy increase by 33.7%and 15.8%from the 6°×6°checkerboard test in the eastern Qinghai-Xizang Plateau.These checkerboard tests validate the capability to effectively capture the spatiotemporal variations characteristics of VLM and show that this algorithm outperforms the sparsely distributed network in the Qinghai-Xizang Plateau.The images from the GPR-VU method using real data in both regions show significant subsidence around Lassen Volcanic in northern California within a 30 km radius,slight uplift in the northern Sichuan Basin,and subsidence in its central and southern sections.These results further qualitatively illustrate consistency with previous findings.The GPR-VU method outperforms in diminishing the effect by fragmented patches,excessive smoothing of velocity peaks,and detecting potential short-wavelength deformations. 展开更多
关键词 Vertical land motion GNSS image gaussian process regression Velocity uncertainty
原文传递
Robotic compliant assembly for complex-shaped composite aircraft frame based on Gaussian process considering uncertainties 被引量:1
3
作者 Yingke YANG Dongsheng LI +3 位作者 Yunong ZHAI Jie WANG Lei XUE Zhiyong YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期471-482,共12页
Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite... Robots are finding increasing application in aircraft composite structure assembly due to their flexibility and the growing demand of aircraft manufacturers for high production rates.The contact force of the composite frame in a robotic assembly of the aircraft composite fuselage panel can hardly be controlled due to the multi-surface variable contact stiffness caused by compliance and complex shape with multiple mating surfaces.The paper proposes a robotic assembly system for the aircraft composite fuselage frame with a compliant contact force control strategy using the Gaussian process surrogate model.First,a robotic assembly system is introduced,and the global coordinate system transformation model is built.Then,a compliant force control architecture is designed to generate the desired output force.Subsequently,a Gaussian process surrogate model with uncertainties is utilized to model the complicated relationship between the robot’s output force and the normal contact force acting on the mating surface of the composite frame.Furthermore,an optimal contact force control strategy is implemented to improve the contact quality.Finally,an experiment demonstrates that the proposed methodology can ensure that the contact force on each surface is within the limit of the engineering specification and uniformly distributed,improving the quality compared to the traditional assembly process. 展开更多
关键词 AIRCRAFT Composite structure assembly Multi-surface contact Compliant control gaussian process Uncertainty
原文传递
State of health prediction for lithium-ion batteries based on ensemble Gaussian process regression 被引量:2
4
作者 HUI Zhouli WANG Ruijie +1 位作者 FENG Nana YANG Ming 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期397-407,共11页
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ... The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability. 展开更多
关键词 lithium-ion batteryies(LIBs) ensemble gaussian process regression(EGPR) state of health(SOH) health indicators(HIs) gannet optimization algorithm(GOA)
在线阅读 下载PDF
Dynamic Gaussian process regression for spatio-temporal data based on local clustering 被引量:1
5
作者 Binglin WANG Liang YAN +3 位作者 Qi RONG Jiangtao CHEN Pengfei SHEN Xiaojun DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期245-257,共13页
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models bas... This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions.The proposed Dynamic Gaussian Process Regression(DGPR)consists of a sequence of local surrogate models related to each other.In DGPR,the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns,where the temporal information is used as the prior information for training the spatial-surrogate model.The DGPR is robust and especially suitable for the loosely coupled model structure,also allowing for parallel computation.The numerical results of the test function show the effectiveness of DGPR.Furthermore,the shock tube problem is successfully approximated under different phenomenon complexity. 展开更多
关键词 gaussian processes Surrogate model Spatio-temporal systems Shock tube problem Local modeling strategy Time-based spatial clustering
原文传递
Reliable calculations of nuclear binding energies by the Gaussian process of machine learning 被引量:1
6
作者 Zi-Yi Yuan Dong Bai +1 位作者 Zhen Wang Zhong-Zhou Ren 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期130-144,共15页
Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the ... Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the α-decay energies for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated α-decay energies for the two new isotopes ^ (204 )Ac(Huang et al. Phys Lett B 834, 137484(2022)) and ^ (207) Th(Yang et al. Phys Rev C 105, L051302(2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian process is reliable for the calculations of nuclear binding energies. Finally, the α-decay properties of some unknown actinide nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding energies and α-decay properties. 展开更多
关键词 Nuclear binding energies DECAY Machine learning gaussian process
在线阅读 下载PDF
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
7
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
在线阅读 下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
8
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization gaussian process Regression(GPR) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
在线阅读 下载PDF
Dynamic System Identification of Underwater Vehicles Using Multi-output Gaussian Processes 被引量:1
9
作者 Wilmer Ariza Ramirez Jus Kocijan +2 位作者 Zhi Quan Leong Hung Duc Nguyen Shantha Gamini Jayasinghe 《International Journal of Automation and computing》 EI CSCD 2021年第5期681-693,共13页
Non-parametric system identification with Gaussian processes for underwater vehicles is explored in this research with the purpose of modelling autonomous underwater vehicle(AUV) dynamics with a low amount of data. Mu... Non-parametric system identification with Gaussian processes for underwater vehicles is explored in this research with the purpose of modelling autonomous underwater vehicle(AUV) dynamics with a low amount of data. Multi-output Gaussian processes and their aptitude for modelling the dynamic system of an underactuated AUV without losing the relationships between tied outputs are used. The simulation of a first-principle model of a Remus 100 AUV is employed to capture data for the training and validation of the multi-output Gaussian processes. The metric and required procedure to carry out multi-output Gaussian processes for AUV with 6 degrees of freedom(DoF) is also shown in this paper. Multi-output Gaussian processes compared with the popular technique of recurrent neural network show that multi-output Gaussian processes manage to surpass RNN for non-parametric dynamic system identification in underwater vehicles with highly coupled DoF with the added benefit of providing the measurement of confidence. 展开更多
关键词 Dependent gaussian processes dynamic system identification multi-output gaussian processes non-parametric identification autonomous underwater vehicle(AUV)
原文传递
Quality prediction of batch process using the global-local discriminant analysis based Gaussian process regression model
10
作者 卢春红 顾晓峰 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期80-86,共7页
The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR... The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR) approach is developed for the quality prediction of nonlinear and multiphase batch processes. After the collected data is preprocessed through batchwise unfolding, the hidden Markov model (HMM) is applied to identify different operation phases. A GLDA algorithm is also presented to extract the appropriate process variables highly correlated with the quality variables, decreasing the complexity of modeling. Besides, the multiple local GPR models are built in the reduced- dimensional space for all the identified operation phases. Furthermore, the HMM-based state estimation is used to classify each measurement sample of a test batch into a corresponding phase with the maximal likelihood estimation. Therefore, the local GPR model with respect to specific phase is selected for online prediction. The effectiveness of the proposed prediction approach is demonstrated through the multiphase penicillin fermentation process. The comparison results show that the proposed GLDA-GPR approach is superior to the regular GPR model and the GPR based on HMM (HMM-GPR) model. 展开更多
关键词 quality prediction global-local discriminantanalysis gaussian process regression hidden Markov model soft sensor
在线阅读 下载PDF
An Improved Treed Gaussian Process
11
作者 John Guenther Herbert K. H Lee 《Applied Mathematics》 2020年第7期613-638,共26页
Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for... Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for modeling this type of nonstationarity is the Treed Gaussian process <span style="font-family:Verdana;">[1]<span style="font-family:Verdana;">, which extended the Gaussian process by dividing the input space into different regions using a binary tree algorithm. Each region became its own Gaussian process. This iterative inference process formed many different trees and thus, many different Gaussian processes. In the end these were combined to get a posterior predictive distribution at each point. The idea was that when the iterations were combined, smoothing would take place for the surface of the predicted points near tree boundaries. We introduce the Improved Treed Gaussian process, which divides the input space into a single main binary tree where the different tree regions have different variability. The parameters for the Gaussian process for each tree region are then determined. These parameters are then smoothed at the region boundaries. This smoothing leads to a set of parameters for each point in the input space that specify the covariance matrix used to predict the point. The advantage is that the prediction and actual errors are estimated better since the standard deviation and range parameters of each point are related to the variation of the region it is in. Further, smoothing between regions is better since each point prediction uses its parameters over the whole input space. Examples are given in this paper which show these advantages for lower-dimensional problems. 展开更多
关键词 Bayesian Statistics Treed gaussian process gaussian process EMULATOR Binary Tree
在线阅读 下载PDF
Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine 被引量:32
12
作者 李修亮 苏宏业 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第1期95-99,共5页
Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples acco... Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes. 展开更多
关键词 multiple model soft sensor affinity propagation gaussian process Bayesian committee machine
在线阅读 下载PDF
Trajectory prediction of ballistic missiles using Gaussian process error model 被引量:6
13
作者 Ruiping JI Yan LIANG +1 位作者 Linfeng XU Zhenwei WEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期458-469,共12页
Ballistic Missile Trajectory Prediction(BMTP)is critical to air defense systems.Most Trajectory Prediction(TP)methods focus on the coast and reentry phases,in which the Ballistic Missile(BM)trajectories are modeled as... Ballistic Missile Trajectory Prediction(BMTP)is critical to air defense systems.Most Trajectory Prediction(TP)methods focus on the coast and reentry phases,in which the Ballistic Missile(BM)trajectories are modeled as ellipses or the state components are propagated by the dynamic integral equations on time scales.In contrast,the boost-phase TP is more challenging because there are many unknown forces acting on the BM in this phase.To tackle this difficult problem,a novel BMTP method by using Gaussian Processes(GPs)is proposed in this paper.In particular,the GP is employed to train the prediction error model of the boost-phase trajectory database,in which the error refers to the difference between the true BM state at the prediction moment and the integral extrapolation of the BM state.And the final BMTP is a combination of the dynamic equation based numerical integration and the GP-based prediction error.Since the trained GP aims to capture the relationship between the numerical integration and the unknown error,the modified BM state prediction is closer to the true one compared with the original TP.Furthermore,the GP is able to output the uncertainty information of the TP,which is of great significance for determining the warning range centered on the predicted BM state.Simulation results show that the proposed method effectively improves the BMTP accuracy during the boost phase and provides reliable uncertainty estimation boundaries. 展开更多
关键词 Ballistic missile Boost-phase trajectory State prediction gaussian processes Uncertainty estimation
原文传递
Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS 被引量:6
14
作者 LYU Xu HU Baiqing +3 位作者 DAI Yongbin SUN Mingfang LIU Yi GAO Duanyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1079-1088,共10页
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important... High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method. 展开更多
关键词 integrated navigation gaussian process regression(GPR) QUATERNION Kalman filter ROBUSTNESS
在线阅读 下载PDF
Fast Remaining Capacity Estimation for Lithium-ion Batteries Based on Short-time Pulse Test and Gaussian Process Regression 被引量:4
15
作者 Aihua Ran Ming Cheng +7 位作者 Shuxiao Chen Zheng Liang Zihao Zhou Guangmin Zhou Feiyu Kang Xuan Zhang Baohua Li Guodan Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期238-246,共9页
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr... It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity. 展开更多
关键词 capacity estimation data-driven method gaussian process regression lithium-ion battery pulse tests
在线阅读 下载PDF
Gaussian process regression model incorporated with tool wear mechanism 被引量:3
16
作者 Dehua LI Yingguang LI Changqing LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期393-400,共8页
Cutting tool condition directly affects machining quality and efficiency.In order to avoid severely worn tools used during machining process and fully release the remaining useful life in the meanwhile,a reliable eval... Cutting tool condition directly affects machining quality and efficiency.In order to avoid severely worn tools used during machining process and fully release the remaining useful life in the meanwhile,a reliable evaluation method of remaining useful life of cutting tools is quite necessary.Due to the variation of cutting conditions,it is a challenge to predict remaining useful life of cutting tools by a unified model.In order to address this issue,this paper proposes a method for predicting the remaining useful life of cutting tools in variable cutting conditions based on Gaussian process regression model incorporated with tool wear mechanism,where the predicted value at adjacent moments is constrained to a linear relationship by the covariance matrix of Gaussian model based on the assumption of progressive tool wear process,so the wear process under continuous changing conditions can be modelled.In addition to that,the input feature space and the output of the model are also enhanced by considering the tool wear mechanism for improving prediction accuracy.Machining experiments are performed to verify the proposed method,and the results show that the proposed could improve the prediction of tool remaining useful life significantly. 展开更多
关键词 Remaining useful life Cutting condition Tool wear Wear mechanism gaussian process regression
原文传递
MULTI-SCALE GAUSSIAN PROCESSES MODEL 被引量:4
17
作者 Zhou Yatong Zhang Taiyi Li Xiaohe 《Journal of Electronics(China)》 2006年第4期618-622,共5页
A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a li... A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a linear basis that is composed of a scale function and its different translations. Finally the distribution of the targets of the given samples can be obtained at different scales. Compared with the standard Gaussian Processes (GP) model, the MGP model can control its complexity conveniently just by adjusting the scale pa-rameter. So it can trade-off the generalization ability and the empirical risk rapidly. Experiments verify the fea-sibility of the MGP model, and exhibit that its performance is superior to the GP model if appropriate scales are chosen. 展开更多
关键词 gaussian processes (GP) Wavelet theory MULTI-SCALE Error bar Machine learning
在线阅读 下载PDF
A genetic Gaussian process regression model based on memetic algorithm 被引量:2
18
作者 张乐 刘忠 +1 位作者 张建强 任雄伟 《Journal of Central South University》 SCIE EI CAS 2013年第11期3085-3093,共9页
Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance o... Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process. 展开更多
关键词 gaussian process hyper-parameters optimization memetic algorithm regression model
在线阅读 下载PDF
Gaussian process regressions on hot deformation behaviors of FGH98 nickel-based powder superalloy 被引量:2
19
作者 Jie Xiong Jian-Chao He +1 位作者 Xue-Song Leng Tong-Yi Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期177-185,共9页
The hot deformation behaviors of FGH98 nickel-based powder superalloy were experimentally investigated and theoretically analyzed by Arrhenius models and machine learning(ML).Hot compression tests were conducted with ... The hot deformation behaviors of FGH98 nickel-based powder superalloy were experimentally investigated and theoretically analyzed by Arrhenius models and machine learning(ML).Hot compression tests were conducted with a Gleeble-3800 thermo-mechanical simulation machine on the FGH98 superalloy at strain rates of 0.001–1 s–1 and temperatures of 1025–1175℃.The peak stresses under different deformation conditions were analyzed via the Sellars model and an ML-inspired Gaussian process regression(GPR)model.The prediction of the GPR model outperformed that from the Sellars model.In addition,the stress-strain responses were predicted by the GPR model and tested by experimentally measured stress-strain curves.The results indicate that the developed GPR model has great power with wide generalization capability in the prediction of hot deformation behaviors of FGH98 superalloy,as evidenced by the R2 value higher than 0.99 on the test dataset. 展开更多
关键词 Hot compressive deformation Nickel-based powder superalloy Activation energy gaussian process regression
原文传递
Gaussian process assisted coevolutionary estimation of distribution algorithm for computationally expensive problems 被引量:2
20
作者 罗娜 钱锋 +1 位作者 赵亮 钟伟民 《Journal of Central South University》 SCIE EI CAS 2012年第2期443-452,共10页
In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in paral... In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm. 展开更多
关键词 estimation of distribution algorithm fitness function modeling gaussian process surrogate approach
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部