期刊文献+
共找到503篇文章
< 1 2 26 >
每页显示 20 50 100
Numerical simulation of the fluid and flexible rods interaction using a semi-resolved coupling model promoted by anisotropic Gaussian kernel function
1
作者 Caiping Jin Jingxin Zhang Yonglin Sun 《Theoretical & Applied Mechanics Letters》 2025年第1期5-8,共4页
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio... The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model. 展开更多
关键词 Semi-resolved coupling model Two-way domain expansion method Anisotropic gaussian kernel function Flexible rod(s)
在线阅读 下载PDF
Gaussian Kernel Based SVR Model for Short-Term Photovoltaic MPP Power Prediction
2
作者 Yasemin Onal 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期141-156,共16页
Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear env... Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN. 展开更多
关键词 Short term power prediction gaussian kernel support vector regression photovoltaic system
在线阅读 下载PDF
Theoretical convergence analysis of complex Gaussian kernel LMS algorithm
3
作者 Wei Gao Jianguo Huang +1 位作者 Jing Han Qunfei Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期39-50,共12页
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no... With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary. 展开更多
关键词 nonlinear adaptive filtering complex gaussian kernel convergence analysis non-circular data kernel least mean square(KLMS).
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
4
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
Stochastic Economic Dispatch Considering the Dependence of Multiple Wind Farms Using Multivariate Gaussian Kernel Copula 被引量:4
5
作者 Yantai Lin Tianyao Ji +1 位作者 Yuzi Jiang Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第5期1352-1362,共11页
Wind farms usually cluster in areas with abundant wind resources.Therefore,spatial dependence of wind speeds among nearby wind farms should be taken into account when modeling a power system with large-scale wind powe... Wind farms usually cluster in areas with abundant wind resources.Therefore,spatial dependence of wind speeds among nearby wind farms should be taken into account when modeling a power system with large-scale wind power penetration.This paper proposes a novel non-parametric copula method,multivariate Gaussian kernel copula(MGKC),to describe the dependence structure of wind speeds among multiple wind farms.Wind speed scenarios considering the dependence among different wind farms are sampled from the MGKC by the quasi-Monte Carlo(QMC)method,so as to solve the stochastic economic dispatch(SED)problem,for which an improved meanvariance(MV)model is established,which targets at minimizing the expectation and risk of fuel cost simultaneously.In this model,confidence interval is applied in the wind speed to obtain more practical dispatch solutions by excluding extreme scenarios,for which the quantile-copula is proposed to construct the confidence interval constraint.Simulation studies are carried out on a modified IEEE 30-bus power system with wind farms integrated in two areas,and the results prove the superiority of the MGKC in formulating the dependence among different wind farms and the superiority of the improved MV model based on quantilecopula in determining a better dispatch solution. 展开更多
关键词 Multivariate gaussian kernel copula Quasi-Monte Carlo Quantile-copula stochastic economic dispatch
原文传递
Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems 被引量:2
6
作者 Aastha Dak Rahul Radhakrishnan 《Control Theory and Technology》 EI CSCD 2022年第4期465-474,共10页
This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the ... This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems. 展开更多
关键词 Maximum correntropy criterion Cubature Kalman filter Non-gaussian noise Cauchy kernel gaussian kernel
原文传递
Gaussian kernel operators on white noise functional spaces
7
作者 骆顺龙 严加安 《Science China Mathematics》 SCIE 2000年第10期1067-1074,共8页
The Gaussian kernel operators on white noise functional spaces, including second quantization, Fourier-Mehler transform, scaling, renormalization, etc. are studied by means of symbol calculus, and characterized by the... The Gaussian kernel operators on white noise functional spaces, including second quantization, Fourier-Mehler transform, scaling, renormalization, etc. are studied by means of symbol calculus, and characterized by the intertwining relations with annihilation and creation operators. The infinitesimal generators of the Gaussian kernel operators are second order white noise operators of which the number operator and the Gross Laplacian are particular examples. 展开更多
关键词 gaussian kernel OPERATORS SYMBOLS Laplacians.
原文传递
Comparison of Uniform and Kernel Gaussian Weight Matrix in Generalized Spatial Panel Data Model
8
作者 Tuti Purwaningsih Erfiani   《Open Journal of Statistics》 2015年第1期90-95,共6页
Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover e... Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations. 展开更多
关键词 Component UNIFORM WEIGHT kernel gaussian WEIGHT GENERALIZED Spatial PANEL Data Model
暂未订购
噪声标签回归的泛化误差估计及过滤算法
9
作者 姜高霞 李政莹 王文剑 《小型微型计算机系统》 北大核心 2025年第1期72-80,共9页
当回归数据中存在数值型标签噪声时,传统泛化误差估计方法不再适用,回归模型的泛化性能缺乏保障.本文提出一种面向标签噪声的回归模型泛化误差估计方法,并设计了自适应高斯核噪声估计与样本召回过滤(adaptive Gaussian kernel noise est... 当回归数据中存在数值型标签噪声时,传统泛化误差估计方法不再适用,回归模型的泛化性能缺乏保障.本文提出一种面向标签噪声的回归模型泛化误差估计方法,并设计了自适应高斯核噪声估计与样本召回过滤(adaptive Gaussian kernel noise estimator and sample recall filtering, AGKSRF)算法.在所提Craven-Wahba(CW)泛化误差估计的基础上,提出一种CW样本选择框架.基于最大后验估计思想和自适应近邻方法,提出标签噪声的自适应高斯核(adaptive Gaussian kernel, AGK)估计方法.结合所提框架,AGKSRF首先过滤大噪声样本,同时考虑到初次过滤时可能有部分干净样本被误删,AGKSRF根据模型在过滤样本上的误差对样本进行召回再过滤.标准数据集上的实验结果表明,AGKSRF降低模型误差的能力提升了6~51个百分点.AGKSRF还可以识别年龄估计数据上的错误标签.因此,AGKSRF算法可以有效提升数据质量. 展开更多
关键词 噪声标签回归 泛化误差估计 自适应高斯核估计 样本召回过滤
在线阅读 下载PDF
基于时空特征融合的风速预测模型研究
10
作者 甘建红 刘小锋 +2 位作者 白爱娟 屈右铭 魏培阳 《微电子学与计算机》 2025年第7期11-20,共10页
针对传统机器学习的气象要素时序预测模型存在的不易融合多源数据以及二维卷积在时间维度感受野受限难以捕捉时空序列信息的依赖关系问题,提出了一种基于三维卷积和Informer模型融合时空特征的时间序列预测模型。其中三维卷积和Informe... 针对传统机器学习的气象要素时序预测模型存在的不易融合多源数据以及二维卷积在时间维度感受野受限难以捕捉时空序列信息的依赖关系问题,提出了一种基于三维卷积和Informer模型融合时空特征的时间序列预测模型。其中三维卷积和Informer分别负责捕获时空特征和基本气象要素特征,有效地捕捉了时间与空间的相关性并提高信息利用率和预测精度。在损失函数方面,针对MSE损失函数对异常值过于敏感容易导致梯度消失等问题,提出一个自适应高斯核函数作为损失函数替代传统的MSE函数,解决模型在长时间序列预测的稳定性问题。结果表明:三维卷积融合时空特征的风速预测模型相较于其他模式预报算法的平均绝对误差降低了12.5%~44.7%,表现更加优异且具有更高的稳定性。 展开更多
关键词 时空序列信息 三维卷积 TRANSFORMER 高斯核函数
在线阅读 下载PDF
自适应核学习的交互式图像分割算法
11
作者 龙建武 李继豪 《通信学报》 北大核心 2025年第7期249-261,共13页
针对现有大多数交互式分割方法在原始特征空间易受噪声干扰及非凸结构影响,致使分割性能受限的问题,提出一种自适应核学习的交互式图像分割算法。首先,在SLIC超像素分割结果上融合用户标注的空间距离信息和像素邻域拓扑关系,构建能量函... 针对现有大多数交互式分割方法在原始特征空间易受噪声干扰及非凸结构影响,致使分割性能受限的问题,提出一种自适应核学习的交互式图像分割算法。首先,在SLIC超像素分割结果上融合用户标注的空间距离信息和像素邻域拓扑关系,构建能量函数。其次,引入核映射机制,将原始数据嵌入高维特征空间,增强线性可分性。接着,基于RBF核函数的平滑性与正定性等特性,设计优化目标函数,并通过迭代优化策略动态调整核参数σ。最后,在BSDS500与MSRC数据集上,采用交并比、信息差异、边界漂移误差和兰德指数等标准评估指标进行系统性实验。结果表明,所提算法在综合评价指标上显著优于对比算法,验证了其在处理复杂场景时的有效性与普适性。 展开更多
关键词 交互式图像分割 超像素分割 能量函数 高斯核函数 参数自适应优化
在线阅读 下载PDF
基于SVDD的车载CAN总线入侵检测方法
12
作者 李秦君 侯文昕 +2 位作者 王之雨 肖德超 杨萍 《电子设计工程》 2025年第19期55-59,64,共6页
随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN... 随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。 展开更多
关键词 车载控制器局域网络 支持向量数据描述 入侵检测 高斯核函数
在线阅读 下载PDF
基于改进组合核函数高斯过程回归的车速预测
13
作者 赵靖华 闻龙 +4 位作者 汪守丰 刘倩妤 周宇麒 刘妲 解方喜 《吉林大学学报(理学版)》 北大核心 2025年第2期454-464,共11页
基于高斯过程回归技术,提出一种新的实时车速预测方法,在准确有效预测前车速度的同时量化了预测的不确定性.该方法通过引入平方指数和Matern的组合核函数SEM,并改进组合核函数为SEM^(*),有效平衡了单一核函数对车速预测的优缺点,并在超... 基于高斯过程回归技术,提出一种新的实时车速预测方法,在准确有效预测前车速度的同时量化了预测的不确定性.该方法通过引入平方指数和Matern的组合核函数SEM,并改进组合核函数为SEM^(*),有效平衡了单一核函数对车速预测的优缺点,并在超参数寻优时采用了粒子群实时求解方法.瞬态工况下2 s时长车速预测的仿真分析表明:相比于单核性能较好的径向基(SE)核函数,SEM方法在车速FTP75工况下平均绝对误差(MAE)和均方根误差(RMSE)标准分别降低了10.09%和7.23%,而SEM^(*)方法在两个误差指标上相比SEM方法分别降低8.02%和8.13%;在城市典型工况下,SEM相比SE方法MAE和RMSE分别降低了3.44%和4.16%,而SEM^(*)在两个误差指标上相比SEM核函数分别降低3.57%和2.17%;同时SEM^(*)方法在FTP75工况单次最大计算时间上相对SE核函数降低0.3 s,城市典型工况付出的代价是相对SE核函数提高了0.015 s的最大计算时间,但计算时间仍在0.1 s采样时刻以内,具有实时性. 展开更多
关键词 组合核函数 高斯过程 车速预测
在线阅读 下载PDF
Corneal Topographic Restoration Imaging Based on Placido Disc
14
作者 WAN Xuanrun WANG Chaoxing +2 位作者 HU Jun JIANG Jian LI Kangmei 《Journal of Donghua University(English Edition)》 2025年第2期204-212,共9页
Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed b... Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed based on the initial corneal information collected using the Placido disc.A corneal point cloud model was established in polar coordinates,and an interpolation algorithm was proposed to fill missing points of the local bicubic B-spline by searching control points in the selfdefined interpolation matrix.The grid interpolation of the point cloud information and the smooth imaging of the final topographic map were achieved by Delaunay triangulation and Gaussian kernel function smoothing.Experiment results show that the proposed interpolation algorithm has higher accuracy than previous algorithms.The mean absolute error between the measured diopter of the original detection and the reconstructed is less than 0.300 D,indicating that this algorithm is feasible. 展开更多
关键词 corneal topography Placido disc point cloud model bicubic B-spline gaussian kernel function
暂未订购
一种用于Mecanum底盘的自适应路径规划算法 被引量:1
15
作者 黄晓宇 孙勇智 +2 位作者 李津蓉 刘薇 李恒通 《机械科学与技术》 北大核心 2025年第3期530-537,共8页
为解决狭小且复杂工作环境下,麦克纳姆轮自动导引车(Automated guided vehicle,AGV)最优路径规划问题,提出了一种基于麦克纳姆轮底盘运动学模型改进的A^(*)算法。首先,将麦克纳姆轮AGV等效为二维最小外接矩形,利用其全向移动特性设计路... 为解决狭小且复杂工作环境下,麦克纳姆轮自动导引车(Automated guided vehicle,AGV)最优路径规划问题,提出了一种基于麦克纳姆轮底盘运动学模型改进的A^(*)算法。首先,将麦克纳姆轮AGV等效为二维最小外接矩形,利用其全向移动特性设计路径搜索策略;其次为提高规划路径的安全性,依据模型特征构建了拓展模型避障矩阵;最后引入二维高斯核函数自适应调整算法实际代价函数和启发估计代价函数的权重系数,平衡搜索的全局性和快速性。仿真试验结果表明:改进的算法在搜索时间和安全性能均高于普通算法,提高了麦克纳姆轮AGV通过狭窄空间或转弯死角的能力,增强了路径搜索效率。 展开更多
关键词 麦克纳姆轮 A^(*)算法 外接矩形 拓展模型避障矩阵 二维高斯核函数
在线阅读 下载PDF
面向非高斯噪声干扰和拒绝服务攻击下的电力系统状态估计方法
16
作者 巫春玲 郑克军 +1 位作者 卢勇 孟锦豪 《电网技术》 北大核心 2025年第7期2895-2905,I0067-I0070,共15页
随着传统电网逐步发展为电力信息物理系统,不可避免会受到非高斯噪声干扰以及随机发生的拒绝服务(denial of service,DoS)攻击,都会导致传统卡尔曼滤波算法在电力系统状态估计时存在估计精度低的问题。为此,该文利用DoS攻击补偿策略重... 随着传统电网逐步发展为电力信息物理系统,不可避免会受到非高斯噪声干扰以及随机发生的拒绝服务(denial of service,DoS)攻击,都会导致传统卡尔曼滤波算法在电力系统状态估计时存在估计精度低的问题。为此,该文利用DoS攻击补偿策略重构了电力系统模型,并提出柯西核最小误差熵容积卡尔曼滤波(Cauchy kernel minimum error entropy cubature Kalman filter,CKMEE-CKF)算法用于电力系统的动态状态估计。所提出的算法基于统计线性化方法构建的增广模型,运用最小误差熵(minimum error entropy,MEE)作为最优准则,将状态误差和测量误差同时合并到MEE代价函数中。同时,用对核宽度不敏感的柯西核取代MEE中的高斯核函数,大大简化了核宽度的选择难度,有效避免了Cholesky分解的奇异性。然后,采用不动点迭代算法递归更新估计。最后,在IEEE-30节点系统和IEEE-118节点系统中,分别运用所提出CKMEE-CKF算法和CKF、MEE-CKF算法在各种噪声环境和DoS攻击下对电力系统进行状态估计。以IEEE-30节点系统电压幅值估计的均方根误差为例,与CKF、MEE-CKF算法相比,实验结果表明,新算法在第3种非高斯噪声干扰下,估计精度分别提高88%、60%;在第1种DoS攻击下,估计精度分别提高91%、70%。可见在非高斯噪声干扰和DoS攻击情况下,新算法的估计精度有显著性提高,是一种有效的电力系统状态估计方法。 展开更多
关键词 电力信息物理系统 非高斯噪声 DOS攻击 柯西核 最小误差熵 电力系统动态状态估计
原文传递
利用Gaussian核对多元函数的近似逼近及其误差估计 被引量:3
17
作者 徐艳艳 陈广贵 雷文慧 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期581-587,共7页
V.Maz’ya首次提出了近似逼近法,其主要是研究定义在全空间上的光滑函数的逼近情况,但它不能有效的处理积分和拟微分算子的高阶求积公式问题及利用更有效的数值和半数值方法解决数学物理的边界等问题.F.M櫣ller和W.Varnhorn给出了一维... V.Maz’ya首次提出了近似逼近法,其主要是研究定义在全空间上的光滑函数的逼近情况,但它不能有效的处理积分和拟微分算子的高阶求积公式问题及利用更有效的数值和半数值方法解决数学物理的边界等问题.F.M櫣ller和W.Varnhorn给出了一维紧区间上函数的近似逼近方法,而且还可以控制近似逼近的截断误差.根据上述思想,采用近似逼近法,利用Gaussian核对二维紧空间上光滑函数进行逼近,并考察由这种近似逼近法所产生的误差情况. 展开更多
关键词 gaussian 近似逼近数 全误差 TAYLOR公式
在线阅读 下载PDF
宽幅遥感图像边缘离焦对块压缩重建的影响研究(特邀)
18
作者 蔡滟馨 刘勋 李维 《光子学报》 北大核心 2025年第9期217-231,共15页
随着空间大口径宽幅光学遥感技术的发展,探测器分辨率不断提升,遥感图像不可避免地存在边缘离焦现象,对块压缩重建技术在天基遥感的应用带来挑战。因此,开展宽幅遥感图像边缘离焦对块压缩重建的影响研究,分析了边缘离焦模糊空间分布规律... 随着空间大口径宽幅光学遥感技术的发展,探测器分辨率不断提升,遥感图像不可避免地存在边缘离焦现象,对块压缩重建技术在天基遥感的应用带来挑战。因此,开展宽幅遥感图像边缘离焦对块压缩重建的影响研究,分析了边缘离焦模糊空间分布规律,构建基于高斯核混合建模的空间变化点扩散函数模型,生成高精度仿真边缘离焦遥感图像,在此基础上提出了边缘离焦图像编码压缩与重构框架。研究了高斯核尺寸、模糊度、重建压缩比对图像重建质量的影响规律,揭示了图像幅宽、压缩比与重建精度之间的约束关系,为天基光学遥感宽幅图像的压缩重建技术应用提供了理论依据。 展开更多
关键词 高斯核混合模型 空间可变点扩散函数 块压缩感知 边缘离焦 天基遥感 图像重建
在线阅读 下载PDF
Gaussian小波SVM及其混沌时间序列预测 被引量:3
19
作者 郑永康 陈维荣 +1 位作者 戴朝华 王维博 《控制工程》 CSCD 北大核心 2009年第4期468-471,共4页
为了提高混沌时间序列的预测精度,针对小波有利于信号细微特征提取的优点,结合小波技术和SVM的核函数方法,提出基于Gaussian小波SVM的混沌时间序列预测模型。证明了偶数阶Gaussian小波函数满足SVM平移不变核条件,并构建相应的Gaussian小... 为了提高混沌时间序列的预测精度,针对小波有利于信号细微特征提取的优点,结合小波技术和SVM的核函数方法,提出基于Gaussian小波SVM的混沌时间序列预测模型。证明了偶数阶Gaussian小波函数满足SVM平移不变核条件,并构建相应的Gaussian小波SVM。对混沌时间序列进行相空间重构,将重构相空间中的向量作为SVM的输入参量。用Gaussian小波SVM与常用的径向基SVM及Morlet小波SVM进行对比实验,通过对Chens混沌时间序列和负荷混沌时间序列的预测,结果表明,Gaussian小波SVM的效果比其他两种SVM更好。 展开更多
关键词 混沌时间序列预测 相空间重构 gaussian小波核 负荷预测
在线阅读 下载PDF
加权高斯匹配滤波下激光复合成像三维重构 被引量:1
20
作者 李丰 李燕 石彬彬 《激光杂志》 北大核心 2025年第1期251-256,共6页
激光复合成像三维重构是通过激光扫描和图像处理算法,实现对物体或场景的高精度三维重建。但在实际应用中,受到光照强度及噪声干扰,技术难以精准捕获像素点细节、纹理、亮度特征,导致重建的三维图像与实际存在一定偏差。为此,提出一种... 激光复合成像三维重构是通过激光扫描和图像处理算法,实现对物体或场景的高精度三维重建。但在实际应用中,受到光照强度及噪声干扰,技术难以精准捕获像素点细节、纹理、亮度特征,导致重建的三维图像与实际存在一定偏差。为此,提出一种加权高斯匹配滤波下激光复合成像三维重构方法。根据激光复合成像机理建立扫描方程,生成激光图像,利用邻域平均法平滑图像噪声,通过核函数、卷积运算匹配像素点对比度,采用马尔科夫随机场建立三维重构模型,经过距离保真、正则化运算,实现激光复合成像三维重构。实验结果表明,经加权高斯匹配滤波后,重构结果能够真实展现物体和场景三维立体图,且误差小、结构相似性高。 展开更多
关键词 加权高斯匹配滤波 激光复合成像 核函数 卷积核 空间距离
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部