期刊文献+
共找到511篇文章
< 1 2 26 >
每页显示 20 50 100
Numerical simulation of the fluid and flexible rods interaction using a semi-resolved coupling model promoted by anisotropic Gaussian kernel function
1
作者 Caiping Jin Jingxin Zhang Yonglin Sun 《Theoretical & Applied Mechanics Letters》 2025年第1期5-8,共4页
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio... The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model. 展开更多
关键词 Semi-resolved coupling model Two-way domain expansion method Anisotropic gaussian kernel function Flexible rod(s)
在线阅读 下载PDF
Theoretical convergence analysis of complex Gaussian kernel LMS algorithm
2
作者 Wei Gao Jianguo Huang +1 位作者 Jing Han Qunfei Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期39-50,共12页
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no... With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS)algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE)performance among of complex kernel LMS(KLMS)methods according to the specified kernel bandwidth and the length of dictionary. 展开更多
关键词 nonlinear adaptive filtering complex gaussian kernel convergence analysis non-circular data kernel least mean square(KLMS).
在线阅读 下载PDF
Gaussian Kernel Based SVR Model for Short-Term Photovoltaic MPP Power Prediction
3
作者 Yasemin Onal 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期141-156,共16页
Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear env... Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN. 展开更多
关键词 Short term power prediction gaussian kernel support vector regression photovoltaic system
在线阅读 下载PDF
Stochastic Economic Dispatch Considering the Dependence of Multiple Wind Farms Using Multivariate Gaussian Kernel Copula 被引量:4
4
作者 Yantai Lin Tianyao Ji +1 位作者 Yuzi Jiang Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第5期1352-1362,共11页
Wind farms usually cluster in areas with abundant wind resources.Therefore,spatial dependence of wind speeds among nearby wind farms should be taken into account when modeling a power system with large-scale wind powe... Wind farms usually cluster in areas with abundant wind resources.Therefore,spatial dependence of wind speeds among nearby wind farms should be taken into account when modeling a power system with large-scale wind power penetration.This paper proposes a novel non-parametric copula method,multivariate Gaussian kernel copula(MGKC),to describe the dependence structure of wind speeds among multiple wind farms.Wind speed scenarios considering the dependence among different wind farms are sampled from the MGKC by the quasi-Monte Carlo(QMC)method,so as to solve the stochastic economic dispatch(SED)problem,for which an improved meanvariance(MV)model is established,which targets at minimizing the expectation and risk of fuel cost simultaneously.In this model,confidence interval is applied in the wind speed to obtain more practical dispatch solutions by excluding extreme scenarios,for which the quantile-copula is proposed to construct the confidence interval constraint.Simulation studies are carried out on a modified IEEE 30-bus power system with wind farms integrated in two areas,and the results prove the superiority of the MGKC in formulating the dependence among different wind farms and the superiority of the improved MV model based on quantilecopula in determining a better dispatch solution. 展开更多
关键词 Multivariate gaussian kernel copula Quasi-Monte Carlo Quantile-copula stochastic economic dispatch
原文传递
Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems 被引量:3
5
作者 Aastha Dak Rahul Radhakrishnan 《Control Theory and Technology》 EI CSCD 2022年第4期465-474,共10页
This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the ... This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems. 展开更多
关键词 Maximum correntropy criterion Cubature Kalman filter Non-gaussian noise Cauchy kernel gaussian kernel
原文传递
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
6
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
Gaussian kernel operators on white noise functional spaces
7
作者 骆顺龙 严加安 《Science China Mathematics》 SCIE 2000年第10期1067-1074,共8页
The Gaussian kernel operators on white noise functional spaces, including second quantization, Fourier-Mehler transform, scaling, renormalization, etc. are studied by means of symbol calculus, and characterized by the... The Gaussian kernel operators on white noise functional spaces, including second quantization, Fourier-Mehler transform, scaling, renormalization, etc. are studied by means of symbol calculus, and characterized by the intertwining relations with annihilation and creation operators. The infinitesimal generators of the Gaussian kernel operators are second order white noise operators of which the number operator and the Gross Laplacian are particular examples. 展开更多
关键词 gaussian kernel OPERATORS SYMBOLS Laplacians.
原文传递
Comparison of Uniform and Kernel Gaussian Weight Matrix in Generalized Spatial Panel Data Model
8
作者 Tuti Purwaningsih Erfiani   《Open Journal of Statistics》 2015年第1期90-95,共6页
Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover e... Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations. 展开更多
关键词 Component UNIFORM WEIGHT kernel gaussian WEIGHT GENERALIZED Spatial PANEL Data Model
暂未订购
利用Gaussian核对多元函数的近似逼近及其误差估计 被引量:3
9
作者 徐艳艳 陈广贵 雷文慧 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期581-587,共7页
V.Maz’ya首次提出了近似逼近法,其主要是研究定义在全空间上的光滑函数的逼近情况,但它不能有效的处理积分和拟微分算子的高阶求积公式问题及利用更有效的数值和半数值方法解决数学物理的边界等问题.F.M櫣ller和W.Varnhorn给出了一维... V.Maz’ya首次提出了近似逼近法,其主要是研究定义在全空间上的光滑函数的逼近情况,但它不能有效的处理积分和拟微分算子的高阶求积公式问题及利用更有效的数值和半数值方法解决数学物理的边界等问题.F.M櫣ller和W.Varnhorn给出了一维紧区间上函数的近似逼近方法,而且还可以控制近似逼近的截断误差.根据上述思想,采用近似逼近法,利用Gaussian核对二维紧空间上光滑函数进行逼近,并考察由这种近似逼近法所产生的误差情况. 展开更多
关键词 gaussian 近似逼近数 全误差 TAYLOR公式
在线阅读 下载PDF
Gaussian小波SVM及其混沌时间序列预测 被引量:3
10
作者 郑永康 陈维荣 +1 位作者 戴朝华 王维博 《控制工程》 CSCD 北大核心 2009年第4期468-471,共4页
为了提高混沌时间序列的预测精度,针对小波有利于信号细微特征提取的优点,结合小波技术和SVM的核函数方法,提出基于Gaussian小波SVM的混沌时间序列预测模型。证明了偶数阶Gaussian小波函数满足SVM平移不变核条件,并构建相应的Gaussian小... 为了提高混沌时间序列的预测精度,针对小波有利于信号细微特征提取的优点,结合小波技术和SVM的核函数方法,提出基于Gaussian小波SVM的混沌时间序列预测模型。证明了偶数阶Gaussian小波函数满足SVM平移不变核条件,并构建相应的Gaussian小波SVM。对混沌时间序列进行相空间重构,将重构相空间中的向量作为SVM的输入参量。用Gaussian小波SVM与常用的径向基SVM及Morlet小波SVM进行对比实验,通过对Chens混沌时间序列和负荷混沌时间序列的预测,结果表明,Gaussian小波SVM的效果比其他两种SVM更好。 展开更多
关键词 混沌时间序列预测 相空间重构 gaussian小波核 负荷预测
在线阅读 下载PDF
Gaussian核SVM在抗噪语音识别中的应用 被引量:1
11
作者 白静 张雪英 《计算机工程与设计》 CSCD 北大核心 2009年第17期4061-4063,4066,共4页
为提高机器学习的推广能力,解决语音识别系统在噪声环境中识别率变差等问题,采用改进的MFCC语音特征参数,用Gaussian核支持向量机(SVM)作为语音识别网络,对SVM多类分类问题采用"一对一"分类算法,实现了一个汉语孤立词非特定... 为提高机器学习的推广能力,解决语音识别系统在噪声环境中识别率变差等问题,采用改进的MFCC语音特征参数,用Gaussian核支持向量机(SVM)作为语音识别网络,对SVM多类分类问题采用"一对一"分类算法,实现了一个汉语孤立词非特定人中等词汇量的抗噪语音识别系统。通过实验,分析了Gaussian核参数和误差惩罚参数C对SVM推广能力的影响。实验结果表明,当工作在不同信噪比情况下,使用最优参数的Gaussion核SVM的识别率比使用RBF神经网络有较大的提高,训练时间能大为缩减,鲁棒性也较好。 展开更多
关键词 支持向量机 gaussian 多类分类算法 特征提取 语音识别
在线阅读 下载PDF
A Kernel-Based Nonlinear Representor with Application to Eigenface Classification 被引量:7
12
作者 张晶 刘本永 谭浩 《Journal of Electronic Science and Technology of China》 2004年第2期19-22,共4页
This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple tech... This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier. 展开更多
关键词 kernel based nonlinear representor face recognition EIGENFACES gaussian kernel euclidean distance classifier
在线阅读 下载PDF
复Gaussian小波核函数及多参数同步优化策略 被引量:1
13
作者 蒋刚 肖建 +1 位作者 郑永康 宋昌林 《信息与控制》 CSCD 北大核心 2006年第4期467-473,共7页
对复Gauss-ian小波满足M ercy条件及其在H ilbert空间具有再生性的命题作了证明.用复Gauss-ian小波构建出一种核函数,与主成分分析方法相结合,对非线性非平稳信号进行参数辨识和预测.针对多参数模型优化时间过长,不利于工程应用的问题,... 对复Gauss-ian小波满足M ercy条件及其在H ilbert空间具有再生性的命题作了证明.用复Gauss-ian小波构建出一种核函数,与主成分分析方法相结合,对非线性非平稳信号进行参数辨识和预测.针对多参数模型优化时间过长,不利于工程应用的问题,提出了一种多参数同步优化策略.仿真实验验证了该方法的可行性和有效性,表明该方法具有较好的实用价值. 展开更多
关键词 gaussian小波 主成分分析 核函数方法 非线性非平稳信号 参数辨识
在线阅读 下载PDF
Gaussian核与具有共同光滑性的Sobolev类的学习误差
14
作者 张苏 韩永杰 王桐心 《乐山师范学院学报》 2016年第8期1-7,共7页
逼近误差和回归函数的正规性有关。文章研究了Gaussian核和Sobolev共同光滑回归函数的逼近误差,并得到其对数收敛阶。这个结果推广了周定轩有关Sobolev光滑回归函数的逼近误差研究。
关键词 机器学习 逼近误差 共同光滑 gaussian
在线阅读 下载PDF
基于KPCA-GaussianNB的电子商务信用风险分类 被引量:3
15
作者 李兵 何华 《物流技术》 2019年第2期61-67,共7页
用核主成分分析(KPCA)和高斯朴素贝叶斯(GaussianNB)构建电子商务信用风险分类模型(KPCAGaussianNB)。首先,通过KPCA方法将电子商务信用风险涉及的指标进行主要特征提取;其次,应用GaussianNB方法构造电子商务信用风险分类模型;最后,使... 用核主成分分析(KPCA)和高斯朴素贝叶斯(GaussianNB)构建电子商务信用风险分类模型(KPCAGaussianNB)。首先,通过KPCA方法将电子商务信用风险涉及的指标进行主要特征提取;其次,应用GaussianNB方法构造电子商务信用风险分类模型;最后,使用18家电子商务企业的真实数据进行实证检验,并依据检验结果提出应对风险的措施。验证结果表明:通过对比GaussianNB、PCA-GaussianNB和KPCA-GaussianNB的平均准确率,KPCA-GaussianNB的平均准确率最高。 展开更多
关键词 电子商务 信用风险 核主成分分析 高斯朴素贝叶斯
在线阅读 下载PDF
Determination of influential parameters for prediction of total sediment loads in mountain rivers using kernel-based approaches
16
作者 Kiyoumars ROUSHANGAR Saman SHAHNAZI 《Journal of Mountain Science》 SCIE CSCD 2020年第2期480-491,共12页
It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport i... It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(Fr), ratio of average velocity(V) to shear velocity(U*) and shields number(θ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers. 展开更多
关键词 Total sediment loads Support vector machine gaussian process regression kernel extreme learning machine Mountain Rivers
原文传递
基于SVDD的车载CAN总线入侵检测方法 被引量:1
17
作者 李秦君 侯文昕 +2 位作者 王之雨 肖德超 杨萍 《电子设计工程》 2025年第19期55-59,64,共6页
随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN... 随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。 展开更多
关键词 车载控制器局域网络 支持向量数据描述 入侵检测 高斯核函数
在线阅读 下载PDF
基于改进组合核函数高斯过程回归的车速预测 被引量:1
18
作者 赵靖华 闻龙 +4 位作者 汪守丰 刘倩妤 周宇麒 刘妲 解方喜 《吉林大学学报(理学版)》 北大核心 2025年第2期454-464,共11页
基于高斯过程回归技术,提出一种新的实时车速预测方法,在准确有效预测前车速度的同时量化了预测的不确定性.该方法通过引入平方指数和Matern的组合核函数SEM,并改进组合核函数为SEM^(*),有效平衡了单一核函数对车速预测的优缺点,并在超... 基于高斯过程回归技术,提出一种新的实时车速预测方法,在准确有效预测前车速度的同时量化了预测的不确定性.该方法通过引入平方指数和Matern的组合核函数SEM,并改进组合核函数为SEM^(*),有效平衡了单一核函数对车速预测的优缺点,并在超参数寻优时采用了粒子群实时求解方法.瞬态工况下2 s时长车速预测的仿真分析表明:相比于单核性能较好的径向基(SE)核函数,SEM方法在车速FTP75工况下平均绝对误差(MAE)和均方根误差(RMSE)标准分别降低了10.09%和7.23%,而SEM^(*)方法在两个误差指标上相比SEM方法分别降低8.02%和8.13%;在城市典型工况下,SEM相比SE方法MAE和RMSE分别降低了3.44%和4.16%,而SEM^(*)在两个误差指标上相比SEM核函数分别降低3.57%和2.17%;同时SEM^(*)方法在FTP75工况单次最大计算时间上相对SE核函数降低0.3 s,城市典型工况付出的代价是相对SE核函数提高了0.015 s的最大计算时间,但计算时间仍在0.1 s采样时刻以内,具有实时性. 展开更多
关键词 组合核函数 高斯过程 车速预测
在线阅读 下载PDF
噪声标签回归的泛化误差估计及过滤算法
19
作者 姜高霞 李政莹 王文剑 《小型微型计算机系统》 北大核心 2025年第1期72-80,共9页
当回归数据中存在数值型标签噪声时,传统泛化误差估计方法不再适用,回归模型的泛化性能缺乏保障.本文提出一种面向标签噪声的回归模型泛化误差估计方法,并设计了自适应高斯核噪声估计与样本召回过滤(adaptive Gaussian kernel noise est... 当回归数据中存在数值型标签噪声时,传统泛化误差估计方法不再适用,回归模型的泛化性能缺乏保障.本文提出一种面向标签噪声的回归模型泛化误差估计方法,并设计了自适应高斯核噪声估计与样本召回过滤(adaptive Gaussian kernel noise estimator and sample recall filtering, AGKSRF)算法.在所提Craven-Wahba(CW)泛化误差估计的基础上,提出一种CW样本选择框架.基于最大后验估计思想和自适应近邻方法,提出标签噪声的自适应高斯核(adaptive Gaussian kernel, AGK)估计方法.结合所提框架,AGKSRF首先过滤大噪声样本,同时考虑到初次过滤时可能有部分干净样本被误删,AGKSRF根据模型在过滤样本上的误差对样本进行召回再过滤.标准数据集上的实验结果表明,AGKSRF降低模型误差的能力提升了6~51个百分点.AGKSRF还可以识别年龄估计数据上的错误标签.因此,AGKSRF算法可以有效提升数据质量. 展开更多
关键词 噪声标签回归 泛化误差估计 自适应高斯核估计 样本召回过滤
在线阅读 下载PDF
基于高斯核密度估计的高速运动目标检测算法
20
作者 郭志荣 李刚 《吉林大学学报(工学版)》 北大核心 2025年第8期2741-2745,共5页
视频序列中的场景是实时变化的,有时前景目标与背景一起变化,有时前景目标变化而背景不变化,想要实现对前景目标的检测与跟踪难度是非常大的。为此,本文提出基于高斯核密度估计的高速运动目标检测算法。利用高斯核密度估计建立背景模型... 视频序列中的场景是实时变化的,有时前景目标与背景一起变化,有时前景目标变化而背景不变化,想要实现对前景目标的检测与跟踪难度是非常大的。为此,本文提出基于高斯核密度估计的高速运动目标检测算法。利用高斯核密度估计建立背景模型,得到每个像素点的概率密度分布;将包含高速运动目标的关键帧从视频序列中提取出来,并计算每个关键帧灰度值的权值;利用全样本定时与实时选择性的更新策略对背景模型完成更新,运用更新后的模型实现对高速运动目标的精准检测。针对highwayI_raw标准测试序列中的某一段视频展开高速运动目标检测,结果表明本文方法具有较高的检测精准度。 展开更多
关键词 高斯核密度估计 高速运动目标检测 概率密度分布 背景模型 关键帧
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部