The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio...The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model.展开更多
Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear env...Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an...Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.展开更多
Wind farms usually cluster in areas with abundant wind resources.Therefore,spatial dependence of wind speeds among nearby wind farms should be taken into account when modeling a power system with large-scale wind powe...Wind farms usually cluster in areas with abundant wind resources.Therefore,spatial dependence of wind speeds among nearby wind farms should be taken into account when modeling a power system with large-scale wind power penetration.This paper proposes a novel non-parametric copula method,multivariate Gaussian kernel copula(MGKC),to describe the dependence structure of wind speeds among multiple wind farms.Wind speed scenarios considering the dependence among different wind farms are sampled from the MGKC by the quasi-Monte Carlo(QMC)method,so as to solve the stochastic economic dispatch(SED)problem,for which an improved meanvariance(MV)model is established,which targets at minimizing the expectation and risk of fuel cost simultaneously.In this model,confidence interval is applied in the wind speed to obtain more practical dispatch solutions by excluding extreme scenarios,for which the quantile-copula is proposed to construct the confidence interval constraint.Simulation studies are carried out on a modified IEEE 30-bus power system with wind farms integrated in two areas,and the results prove the superiority of the MGKC in formulating the dependence among different wind farms and the superiority of the improved MV model based on quantilecopula in determining a better dispatch solution.展开更多
This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the ...This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems.展开更多
The Gaussian kernel operators on white noise functional spaces, including second quantization, Fourier-Mehler transform, scaling, renormalization, etc. are studied by means of symbol calculus, and characterized by the...The Gaussian kernel operators on white noise functional spaces, including second quantization, Fourier-Mehler transform, scaling, renormalization, etc. are studied by means of symbol calculus, and characterized by the intertwining relations with annihilation and creation operators. The infinitesimal generators of the Gaussian kernel operators are second order white noise operators of which the number operator and the Gross Laplacian are particular examples.展开更多
Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover e...Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations.展开更多
随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN...随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。展开更多
Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed b...Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed based on the initial corneal information collected using the Placido disc.A corneal point cloud model was established in polar coordinates,and an interpolation algorithm was proposed to fill missing points of the local bicubic B-spline by searching control points in the selfdefined interpolation matrix.The grid interpolation of the point cloud information and the smooth imaging of the final topographic map were achieved by Delaunay triangulation and Gaussian kernel function smoothing.Experiment results show that the proposed interpolation algorithm has higher accuracy than previous algorithms.The mean absolute error between the measured diopter of the original detection and the reconstructed is less than 0.300 D,indicating that this algorithm is feasible.展开更多
基金supported by Shanghai 2021“Science and Technology Innovation Action Plan”:Social Development Science and Technology Research Project(Grant No.21DZ1202703).
文摘The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model.
文摘Predicting the power obtained at the output of the photovoltaic(PV)system is fundamental for the optimum use of the PV system.However,it varies at different times of the day depending on intermittent and nonlinear environmen-tal conditions including solar irradiation,temperature and the wind speed,Short-term power prediction is vital in PV systems to reconcile generation and demand in terms of the cost and capacity of the reserve.In this study,a Gaussian kernel based Support Vector Regression(SVR)prediction model using multiple input variables is proposed for estimating the maximum power obtained from using per-turb observation method in the different irradiation and the different temperatures for a short-term in the DC-DC boost converter at the PV system.The performance of the kernel-based prediction model depends on the availability of a suitable ker-nel function that matches the learning objective,since an unsuitable kernel func-tion or hyper parameter tuning results in significantly poor performance.In this study for thefirst time in the literature both maximum power is obtained at max-imum power point and short-term maximum power estimation is made.While evaluating the performance of the suggested model,the PV power data simulated at variable irradiations and variable temperatures for one day in the PV system simulated in MATLAB were used.The maximum power obtained from the simu-lated system at maximum irradiance was 852.6 W.The accuracy and the perfor-mance evaluation of suggested forecasting model were identified utilizing the computing error statistics such as root mean square error(RMSE)and mean square error(MSE)values.MSE and RMSE rates which obtained were 4.5566*10-04 and 0.0213 using ANN model.MSE and RMSE rates which obtained were 13.0000*10-04 and 0.0362 using SWD-FFNN model.Using SVR model,1.1548*10-05 MSE and 0.0034 RMSE rates were obtained.In the short-term maximum power prediction,SVR gave higher prediction performance according to ANN and SWD-FFNN.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.
基金supported by the National Key R&D Program of China(No.2022YFA1005204l)。
文摘Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.
基金This research is supported by the Key-Area Research and Development Program of Guangdong Province(No.2020B010166004)the Fundamental Research Funds for the Central Universities,SCUT(No.2018ZD06).
文摘Wind farms usually cluster in areas with abundant wind resources.Therefore,spatial dependence of wind speeds among nearby wind farms should be taken into account when modeling a power system with large-scale wind power penetration.This paper proposes a novel non-parametric copula method,multivariate Gaussian kernel copula(MGKC),to describe the dependence structure of wind speeds among multiple wind farms.Wind speed scenarios considering the dependence among different wind farms are sampled from the MGKC by the quasi-Monte Carlo(QMC)method,so as to solve the stochastic economic dispatch(SED)problem,for which an improved meanvariance(MV)model is established,which targets at minimizing the expectation and risk of fuel cost simultaneously.In this model,confidence interval is applied in the wind speed to obtain more practical dispatch solutions by excluding extreme scenarios,for which the quantile-copula is proposed to construct the confidence interval constraint.Simulation studies are carried out on a modified IEEE 30-bus power system with wind farms integrated in two areas,and the results prove the superiority of the MGKC in formulating the dependence among different wind farms and the superiority of the improved MV model based on quantilecopula in determining a better dispatch solution.
基金Rahul Radhakrishnan received the B.Tech.degree in Applied Electronics and Instrumentation from the Government Engineering College,Calicut,India,in 2010 and the M.Tech.degreein Control Systems from the Department of Electrical Engineering,National Institute of Technology Kurukshetra,India,in 2013.He received the Ph.D.degree from the Department of Electrical Engineering,Indian Institute of Technology Patna,India,in 2018.Currently,he is workingasan Assistant Professor in the Department of Electrical Engineering,Sardar Vallabhbhai National Institute of Technology,Surat,Gujarat,India.His main research interests include nonlinear filtering,aerospace,and underwater target tracking.
文摘This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems.
文摘The Gaussian kernel operators on white noise functional spaces, including second quantization, Fourier-Mehler transform, scaling, renormalization, etc. are studied by means of symbol calculus, and characterized by the intertwining relations with annihilation and creation operators. The infinitesimal generators of the Gaussian kernel operators are second order white noise operators of which the number operator and the Gross Laplacian are particular examples.
文摘Panel data combine cross-section data and time series data. If the cross-section is locations, there is a need to check the correlation among locations. ρ and λ are parameters in generalized spatial model to cover effect of correlation between locations. Value of ρ or λ will influence the goodness of fit model, so it is important to make parameter estimation. The effect of another location is covered by making contiguity matrix until it gets spatial weighted matrix (W). There are some types of W—uniform W, binary W, kernel Gaussian W and some W from real case of economics condition or transportation condition from locations. This study is aimed to compare uniform W and kernel Gaussian W in spatial panel data model using RMSE value. The result of analysis showed that uniform weight had RMSE value less than kernel Gaussian model. Uniform W had stabil value for all the combinations.
文摘随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。
基金Shanghai Science and Technology Program,China (No.20DZ2251400)。
文摘Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed based on the initial corneal information collected using the Placido disc.A corneal point cloud model was established in polar coordinates,and an interpolation algorithm was proposed to fill missing points of the local bicubic B-spline by searching control points in the selfdefined interpolation matrix.The grid interpolation of the point cloud information and the smooth imaging of the final topographic map were achieved by Delaunay triangulation and Gaussian kernel function smoothing.Experiment results show that the proposed interpolation algorithm has higher accuracy than previous algorithms.The mean absolute error between the measured diopter of the original detection and the reconstructed is less than 0.300 D,indicating that this algorithm is feasible.