The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled l...The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.展开更多
The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction,named as gate-controlled supercurrent(GCS),has raised great interest for fundamental an...The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction,named as gate-controlled supercurrent(GCS),has raised great interest for fundamental and technological reasons.To gain a deeper understanding of this effect and develop superconducting technologies based on it,the material and physical parameters crucial for the GCS effect must be identified.Top-down fabrication protocols should also be optimized to increase device scalability,although studies suggest that top-down fabricated devices are more resilient to show a GCS.Here,we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of the noncentrosymmetric superconductor niobium rhenium with varying ratios of the constituents(NbRe).Unlike other devices previously reported and made with a top-down approach,our NbRe devices systematically exhibit a GCS effect when they were fabricated from NbRe thin films with small grain size and etched in specific conditions.These observations pave the way for the realization of top-down-made GCS devices with high scalability.Our results also imply that physical parameters like structural disorder and surface physical properties of the nanobridges,which can be in turn modified by the fabrication process,are crucial for a GCS observation,providing therefore also important insights into the physics underlying the GCS effect.展开更多
为了提高微波光子矢量网络分析仪(MPVNA)进行脉冲测量时的动态范围,提出了一种软件门控方案,该方案利用临时闲置接收通道接收与脉冲激励产生的控制信号同源的脉冲方波,以此生成门控信号。通过这个门控信号对采集到的待测器件脉冲响应进...为了提高微波光子矢量网络分析仪(MPVNA)进行脉冲测量时的动态范围,提出了一种软件门控方案,该方案利用临时闲置接收通道接收与脉冲激励产生的控制信号同源的脉冲方波,以此生成门控信号。通过这个门控信号对采集到的待测器件脉冲响应进行控制,有效提高了信噪比和测量的动态范围。对10 GHz带通滤波器的脉冲散射参数(S参数)进行了测量,实验结果表明:在占空比为1%的脉冲激励下,应用软件门控的测量动态范围相比未应用门控时的提高了约20 d B;门控处理后测得的S11和S22参数曲线也因为信噪比的提升更加光滑和稳定。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532261 and 1630141)
文摘The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.
基金the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No.964398(SuperGate)the US ONR(Nos.N00014-21-1-2879,N00014-20-1-2442,and N00014-23-1-2866).
文摘The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction,named as gate-controlled supercurrent(GCS),has raised great interest for fundamental and technological reasons.To gain a deeper understanding of this effect and develop superconducting technologies based on it,the material and physical parameters crucial for the GCS effect must be identified.Top-down fabrication protocols should also be optimized to increase device scalability,although studies suggest that top-down fabricated devices are more resilient to show a GCS.Here,we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of the noncentrosymmetric superconductor niobium rhenium with varying ratios of the constituents(NbRe).Unlike other devices previously reported and made with a top-down approach,our NbRe devices systematically exhibit a GCS effect when they were fabricated from NbRe thin films with small grain size and etched in specific conditions.These observations pave the way for the realization of top-down-made GCS devices with high scalability.Our results also imply that physical parameters like structural disorder and surface physical properties of the nanobridges,which can be in turn modified by the fabrication process,are crucial for a GCS observation,providing therefore also important insights into the physics underlying the GCS effect.
文摘为了提高微波光子矢量网络分析仪(MPVNA)进行脉冲测量时的动态范围,提出了一种软件门控方案,该方案利用临时闲置接收通道接收与脉冲激励产生的控制信号同源的脉冲方波,以此生成门控信号。通过这个门控信号对采集到的待测器件脉冲响应进行控制,有效提高了信噪比和测量的动态范围。对10 GHz带通滤波器的脉冲散射参数(S参数)进行了测量,实验结果表明:在占空比为1%的脉冲激励下,应用软件门控的测量动态范围相比未应用门控时的提高了约20 d B;门控处理后测得的S11和S22参数曲线也因为信噪比的提升更加光滑和稳定。