The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
Gamma irradiation is employed for in situ preparation of PVA-PANI-ZnS nanocomposite. The irradiation dose is varied from 10 to 40 kGy at 10 kGy intervals. The XRD result confirms the formation of crystalline phases co...Gamma irradiation is employed for in situ preparation of PVA-PANI-ZnS nanocomposite. The irradiation dose is varied from 10 to 40 kGy at 10 kGy intervals. The XRD result confirms the formation of crystalline phases corresponding to ZnS nanoparticles, PVA and PANI. Field emission scanning electron microscopy shows the formation of agglomerated PANI along the PVA backbone, within which the ZnS nanoparticles are dispersed.UV-visible spectroscopy is conducted to measure the transmittance spectra of samples revealing the electronic absorption characteristics of ZnS and PANI nanoparticles. Photo-acoustic(PA) setup is installed to investigate the thermal properties of samples. The PA spectroscopy indicates a high value of thermal diffusivity for samples due to the presence of ZnS and PANI nanoparticles. Moreover, at higher doses, the more polymerization and formation of PANI and ZnS nanoparticles result in enhancement of thermal diffusivity.展开更多
The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse ...The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation between the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.展开更多
We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highe...We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highest pulses from burst profiles observed by BATSE on board CGRO from 1991 April 21 to 1999 January 26. The statistical light curves of the highest pulses in four energy channels have been derived by an aligning method, which illustrate the temporal evolution of the pulse emission. Our result that narrower pulses go with higher energies is consistent with previous findings. By normalizing both the pulse durations and counts to unity, 'characteristic' profiles of the highest pulses in the four channels are also derived. The four characteristic profiles are turned out to be almost the same, thus strongly support the previous conclusion that the temporal profiles in different energy channels are self-similar and the previous conjecture on GRB pulses, implying that the emission process is similar at different energies. The cosmological time dilation effect is examined by investigating the relationship between the pulse flux and pulse duration. An anti-correlation between the two was found, which agrees with the expectation of the cosmological time dilation effect. Also, the evolution of the pulse duration with the observational epoch is studied. The result shows that the pulse duration tends to be shorter in later epochs. This trend cannot be explained by the present theoretical models, and may represent a great challenge to current theories.展开更多
Using 64 ms count data of long gamma-ray bursts (T90 〉 2.6 s), we analyze the quantity named relative spectral lag (RSL), T31/FWHM(1). We investigated in detail all the correlations between the RSL and other pa...Using 64 ms count data of long gamma-ray bursts (T90 〉 2.6 s), we analyze the quantity named relative spectral lag (RSL), T31/FWHM(1). We investigated in detail all the correlations between the RSL and other parameters for a sample of nine long bursts, using the general cross-correlation technique that includes the lag between two different energy bands. We conclude that the distribution of RSLs is normal and has a mean value of 0.1; that the RSLs are weakly correlated with the FWHM, the asymmetry, peak flux (Fp), peak energy (Ep) and spectral indexes (α and β), while they are uncorrelated with τ31, the hardness- ratio (HR31) and the peak time (tm). Our important discovery is that redshift (z) and peak luminosity (Lp) are strongly correlated with the RSL, which can be measured easily and directly, making the RSL a good redshift and peak luminosity indicator.展开更多
With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and va...With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and variability indices of the remaining 575 unassociated Fermi LAT sources. Consequently, it is suggested that the unassociated sources could statistically consist of Galactic supernova remnants/pulsar wind nebulae, BL Lacertae objects, fiat spectrum radio quasars and other types of active galaxies with fractions of 25%, 29%, 41% and 5%, respectively.展开更多
In this paper, we present an energy calibration method based on steep Compton edges of the laser Compton scattered(LCS) photon energy spectra. It performs consecutive energy calibration in the neighborhood of certain ...In this paper, we present an energy calibration method based on steep Compton edges of the laser Compton scattered(LCS) photon energy spectra. It performs consecutive energy calibration in the neighborhood of certain energy, hence improves calibration precision in the energy region. It can also achieve direct calibration at high energy region(several MeV) where detectors can only be calibrated by extrapolation in conventional methods.These make it suitable for detectors that need wide-range energy calibration with high precision. The effects of systematic uncertainties on accuracy of this calibration method are studied by simulation, using the design parameters of a LCS device—SINAP Ⅲ. The results show that the SINAP Ⅲ device is able to perform energy calibration work over the energy region of 25–740 keV. The precision of calibration is better than 1.6% from 25 to 300 keV and is better than 0.5% from 300 to 740 keV.展开更多
The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate t...The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate the two puzzles based on the global spectral behaviors of different GRB populations, the long GRBs, the short GRBs, and the X-ray flashes (XRFs), in the HR?E<SUB>p</SUB> plane (HR the spectral hardness ratio) with BATSE and HETE-2 observations. It is found that the long GRBs and the XRFs observed by HETE-2 seem to follow the same sequence in the HR?E<SUB>p</SUB> plane, with the XRFs at the low end of this sequence. We fit the sequence by a universal Band function, and find that this sequence is mainly defined by the low energy index α, and is insensitive to the high energy index, β. With fixed β = ?5, a best fit is given by α = ?1.00 with χ<SUP>2</SUP><SUB>min</SUB>/dof = 2.2. The long and short GRBs observed by BATSE follow significantly different sequences in the HR?E<SUB>p</SUB> plane, with most of the short GRBs having a larger hardness ratio than the long GRBs at a given E<SUB>p</SUB>. For the long GRBs a best-fit yields α = ?0.30 and β = ?2.05. For the short GRBs, a best fit gives α = ?0.60 with χ<SUP>2</SUP><SUB>min</SUB> = 1.1 (with β fixed at -2.0 because it is numerically unstable). The α value for the short GRBs is significantly greater than that for the long GRBs. These results indicate that the global spectral behaviors of the long GRB sample and the XRF sample are similar, while that of the short GRBs is different. The short GRBs seem to be a unique subclass of GRBs, and they are not the higher energy extension of the long GRBs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.
文摘Gamma irradiation is employed for in situ preparation of PVA-PANI-ZnS nanocomposite. The irradiation dose is varied from 10 to 40 kGy at 10 kGy intervals. The XRD result confirms the formation of crystalline phases corresponding to ZnS nanoparticles, PVA and PANI. Field emission scanning electron microscopy shows the formation of agglomerated PANI along the PVA backbone, within which the ZnS nanoparticles are dispersed.UV-visible spectroscopy is conducted to measure the transmittance spectra of samples revealing the electronic absorption characteristics of ZnS and PANI nanoparticles. Photo-acoustic(PA) setup is installed to investigate the thermal properties of samples. The PA spectroscopy indicates a high value of thermal diffusivity for samples due to the presence of ZnS and PANI nanoparticles. Moreover, at higher doses, the more polymerization and formation of PANI and ZnS nanoparticles result in enhancement of thermal diffusivity.
基金the National Natural Science Foundation of China.
文摘The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation between the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.
基金Supported by the National Natural Science Foundation of China.
文摘We study the statistical properties of the highest pulses within individual gamma-ray bursts (GRBs). A wavelet package analysis technique and a developed pulse-finding algorithm have been applied to identify the highest pulses from burst profiles observed by BATSE on board CGRO from 1991 April 21 to 1999 January 26. The statistical light curves of the highest pulses in four energy channels have been derived by an aligning method, which illustrate the temporal evolution of the pulse emission. Our result that narrower pulses go with higher energies is consistent with previous findings. By normalizing both the pulse durations and counts to unity, 'characteristic' profiles of the highest pulses in the four channels are also derived. The four characteristic profiles are turned out to be almost the same, thus strongly support the previous conclusion that the temporal profiles in different energy channels are self-similar and the previous conjecture on GRB pulses, implying that the emission process is similar at different energies. The cosmological time dilation effect is examined by investigating the relationship between the pulse flux and pulse duration. An anti-correlation between the two was found, which agrees with the expectation of the cosmological time dilation effect. Also, the evolution of the pulse duration with the observational epoch is studied. The result shows that the pulse duration tends to be shorter in later epochs. This trend cannot be explained by the present theoretical models, and may represent a great challenge to current theories.
基金Supported by the National Natural Science Foundation of China.
文摘Using 64 ms count data of long gamma-ray bursts (T90 〉 2.6 s), we analyze the quantity named relative spectral lag (RSL), T31/FWHM(1). We investigated in detail all the correlations between the RSL and other parameters for a sample of nine long bursts, using the general cross-correlation technique that includes the lag between two different energy bands. We conclude that the distribution of RSLs is normal and has a mean value of 0.1; that the RSLs are weakly correlated with the FWHM, the asymmetry, peak flux (Fp), peak energy (Ep) and spectral indexes (α and β), while they are uncorrelated with τ31, the hardness- ratio (HR31) and the peak time (tm). Our important discovery is that redshift (z) and peak luminosity (Lp) are strongly correlated with the RSL, which can be measured easily and directly, making the RSL a good redshift and peak luminosity indicator.
基金supported by the National Natural Science Foundation of China (Grant No. 11103004)the Foundation for the Authors of National Excellent Doctoral Dissertations of China (Grant No. 201225)
文摘With the assistance of the identified/associated sources in the second Fermi Large Area Telescope (LAT) catalog, we analyze and resolve the spatial distribution and the distributions of the gamma-ray spectral and variability indices of the remaining 575 unassociated Fermi LAT sources. Consequently, it is suggested that the unassociated sources could statistically consist of Galactic supernova remnants/pulsar wind nebulae, BL Lacertae objects, fiat spectrum radio quasars and other types of active galaxies with fractions of 25%, 29%, 41% and 5%, respectively.
基金supported by the National Key Research and Development Program of China(No.2016YFA0401901)the National Natural Science Foundation of China(No.11405427)
文摘In this paper, we present an energy calibration method based on steep Compton edges of the laser Compton scattered(LCS) photon energy spectra. It performs consecutive energy calibration in the neighborhood of certain energy, hence improves calibration precision in the energy region. It can also achieve direct calibration at high energy region(several MeV) where detectors can only be calibrated by extrapolation in conventional methods.These make it suitable for detectors that need wide-range energy calibration with high precision. The effects of systematic uncertainties on accuracy of this calibration method are studied by simulation, using the design parameters of a LCS device—SINAP Ⅲ. The results show that the SINAP Ⅲ device is able to perform energy calibration work over the energy region of 25–740 keV. The precision of calibration is better than 1.6% from 25 to 300 keV and is better than 0.5% from 300 to 740 keV.
基金the National Natural Science Foundation of China.
文摘The narrowness of the distribution of the peak energy of the νF<SUB>ν</SUB> spectrum of gamma-ray bursts (GRBs) and the unification of GRB populations are great puzzles yet to be solved. We investigate the two puzzles based on the global spectral behaviors of different GRB populations, the long GRBs, the short GRBs, and the X-ray flashes (XRFs), in the HR?E<SUB>p</SUB> plane (HR the spectral hardness ratio) with BATSE and HETE-2 observations. It is found that the long GRBs and the XRFs observed by HETE-2 seem to follow the same sequence in the HR?E<SUB>p</SUB> plane, with the XRFs at the low end of this sequence. We fit the sequence by a universal Band function, and find that this sequence is mainly defined by the low energy index α, and is insensitive to the high energy index, β. With fixed β = ?5, a best fit is given by α = ?1.00 with χ<SUP>2</SUP><SUB>min</SUB>/dof = 2.2. The long and short GRBs observed by BATSE follow significantly different sequences in the HR?E<SUB>p</SUB> plane, with most of the short GRBs having a larger hardness ratio than the long GRBs at a given E<SUB>p</SUB>. For the long GRBs a best-fit yields α = ?0.30 and β = ?2.05. For the short GRBs, a best fit gives α = ?0.60 with χ<SUP>2</SUP><SUB>min</SUB> = 1.1 (with β fixed at -2.0 because it is numerically unstable). The α value for the short GRBs is significantly greater than that for the long GRBs. These results indicate that the global spectral behaviors of the long GRB sample and the XRF sample are similar, while that of the short GRBs is different. The short GRBs seem to be a unique subclass of GRBs, and they are not the higher energy extension of the long GRBs.
基金Supported by the National Natural Science Foundation of China (Nos. 81101132, 11305203) and the Natural Science Foundation of Anhui Province (Nos. 11040606Q55, 1308085QH138).