Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion...Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.展开更多
A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical re-s...A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical re-sults for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A com-parison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.展开更多
A metamaterial was introduced into the cover of a patch antenna and its band structure was analyzed. The metama- terial cover with correct selection of the working frequency increases by 9.14 dB the patch antenna’s d...A metamaterial was introduced into the cover of a patch antenna and its band structure was analyzed. The metama- terial cover with correct selection of the working frequency increases by 9.14 dB the patch antenna’s directivity. The mechanism of metamaterial cover is completely different from that of a photonic bandgap cover. The mechanism of the metamaterial cover, the number of the cover’s layers, and the distance between the layers, were analyzed in detail. The results showed that the metamaterial cover, which works like a lens, could effectively improve the patch antenna’s directivity. The physical reasons for the improvement are also given.展开更多
PMVS(Patch-based Multi-View Stereo)三维重建算法被广泛应用于无人机航拍影像的三维场景重建中。针对PMVS三维重建算法计算量大、时间复杂度高的问题,提出了PMVS算法的CPU多线程和GPU两级粒度并行策略(Multithread and GPU Parallel S...PMVS(Patch-based Multi-View Stereo)三维重建算法被广泛应用于无人机航拍影像的三维场景重建中。针对PMVS三维重建算法计算量大、时间复杂度高的问题,提出了PMVS算法的CPU多线程和GPU两级粒度并行策略(Multithread and GPU Parallel Schema,MGPS),方法具体包括:基于GPU的PMVS算法特征提取和片面扩散的并行设计;多影像的GPU和CPU任务分配机制,以使得部分任务分配给CPU采用多线程并行,部分任务分配给GPU并行时,程序总运行时间最短。实验采用搭载24核CPU和NVIDIA Tesla K20GPU的高性能服务器作为测试平台,针对分辨率为4081×2993的16幅无人机影像进行三维重建。实验结果表明,相比串行的PMVS算法,基于MGPS的PMVS算法取得4倍左右的加速比,其中特征提取最高加速13倍,计算误差在10%以内,该方法实现了更高效的PMVS三维重建。基于MGPS的PMVS算法还可用于文物保护、医学图像处理、虚拟现实等领域。展开更多
基金funded by the National Natural Science Foundation of China (No.32360418)the Guizhou Provincial Basic Research Program (Natural Science)(No.QianKeHeJiChu-ZK[2024]YiBan022)。
文摘Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.
文摘A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical re-sults for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A com-parison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.
基金Project (No. 2004CB719802) supported by the National Basic Research Program (973) of China
文摘A metamaterial was introduced into the cover of a patch antenna and its band structure was analyzed. The metama- terial cover with correct selection of the working frequency increases by 9.14 dB the patch antenna’s directivity. The mechanism of metamaterial cover is completely different from that of a photonic bandgap cover. The mechanism of the metamaterial cover, the number of the cover’s layers, and the distance between the layers, were analyzed in detail. The results showed that the metamaterial cover, which works like a lens, could effectively improve the patch antenna’s directivity. The physical reasons for the improvement are also given.
文摘PMVS(Patch-based Multi-View Stereo)三维重建算法被广泛应用于无人机航拍影像的三维场景重建中。针对PMVS三维重建算法计算量大、时间复杂度高的问题,提出了PMVS算法的CPU多线程和GPU两级粒度并行策略(Multithread and GPU Parallel Schema,MGPS),方法具体包括:基于GPU的PMVS算法特征提取和片面扩散的并行设计;多影像的GPU和CPU任务分配机制,以使得部分任务分配给CPU采用多线程并行,部分任务分配给GPU并行时,程序总运行时间最短。实验采用搭载24核CPU和NVIDIA Tesla K20GPU的高性能服务器作为测试平台,针对分辨率为4081×2993的16幅无人机影像进行三维重建。实验结果表明,相比串行的PMVS算法,基于MGPS的PMVS算法取得4倍左右的加速比,其中特征提取最高加速13倍,计算误差在10%以内,该方法实现了更高效的PMVS三维重建。基于MGPS的PMVS算法还可用于文物保护、医学图像处理、虚拟现实等领域。