期刊文献+
共找到38,009篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of SiO_(2)/Al_(2)O_(3)Ratios on Microstructure,Properties and Elastic Modulus of SiO_(2)-Al_(2)O_(3)-CaO-MgO Alkali-Free Glass
1
作者 DONG Peng TENG Zhou +3 位作者 XIE Jun ZHANG Jihong XIONG Dehua CHEN Dequan 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期45-53,共9页
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes... Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass. 展开更多
关键词 alkali free glass glass network structure VISCOSITY elastic modulus
原文传递
HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images
2
作者 Hairul Aysa Abdul Halim Sithiq Liyana Shuib +1 位作者 Muneer Ahmad Chermaine Deepa Antony 《Computers, Materials & Continua》 2026年第1期999-1023,共25页
Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal... Honeycombing Lung(HCL)is a chronic lung condition marked by advanced fibrosis,resulting in enlarged air spaces with thick fibrotic walls,which are visible on Computed Tomography(CT)scans.Differentiating between normal lung tissue,honeycombing lungs,and Ground Glass Opacity(GGO)in CT images is often challenging for radiologists and may lead to misinterpretations.Although earlier studies have proposed models to detect and classify HCL,many faced limitations such as high computational demands,lower accuracy,and difficulty distinguishing between HCL and GGO.CT images are highly effective for lung classification due to their high resolution,3D visualization,and sensitivity to tissue density variations.This study introduces Honeycombing Lungs Network(HCL Net),a novel classification algorithm inspired by ResNet50V2 and enhanced to overcome the shortcomings of previous approaches.HCL Net incorporates additional residual blocks,refined preprocessing techniques,and selective parameter tuning to improve classification performance.The dataset,sourced from the University Malaya Medical Centre(UMMC)and verified by expert radiologists,consists of CT images of normal,honeycombing,and GGO lungs.Experimental evaluations across five assessments demonstrated that HCL Net achieved an outstanding classification accuracy of approximately 99.97%.It also recorded strong performance in other metrics,achieving 93%precision,100%sensitivity,89%specificity,and an AUC-ROC score of 97%.Comparative analysis with baseline feature engineering methods confirmed the superior efficacy of HCL Net.The model significantly reduces misclassification,particularly between honeycombing and GGO lungs,enhancing diagnostic precision and reliability in lung image analysis. 展开更多
关键词 Deep learning honeycombing lung ground glass opacity Resnet50v2 multiclass classification
在线阅读 下载PDF
Pressure-Modulated Activation Energy as a Unified Descriptor of Mechanical Behavior in Metallic Glass
3
作者 Huanrong Liu Jian Li +1 位作者 Shan Zhang Pengfei Guan 《Chinese Physics Letters》 2026年第1期71-82,共12页
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ... The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework. 展开更多
关键词 pressure modulated activation energy predicting mechanical properties metallic glass relaxation processes functional properties mechanical behavior simulations varied protocols structural configurational descriptors
原文传递
In Situ Calorimetry Study on Cooling of the Metallic-Glass Forming Melts
4
作者 Xin-Yu Luo Qi Cheng +1 位作者 Yong-Hao Sun Wei-Hua Wang 《Chinese Physics Letters》 2026年第1期83-88,共6页
Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional relian... Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional reliance on reheating data of melt-quenched glasses by demonstrating direct observations of glass transition on cooling curves utilizing the most advanced fast differential scanning calorimetry.By leveraging an MEMS chip sensor that allows for rapid heat extraction from microgram-sized samples to a purged gas coolant,the device is able to reach ultra-fast cooling rates of up to 40,000 K·s^(−1).Four thermal regions are identified by examining the cooling behaviors of two metallic glasses.This is because the actual rate of the specimen can differ from the programmed rate,especially at high set rate when the actual rate decreases before the glass transition is completed.We define the operational window for reliable cooling curve analysis,build models with empirical and theoretical analyses to determine the maximum feasible cooling rate,and demonstrate how optimizing sample mass and environment temperature broaden this window.The method avoids deceptive structural relaxation effects verified by fictivetemperature analysis and permits the capture of full glass transition during cooling. 展开更多
关键词 situ property evolution mems chip sensor reheating data direct observations glass transition differential scanning calorimetryby optimizing microchannel design situ calorimetry heat extraction
原文传递
Luminescence Properties of Tb^(3+) Doped High-density Germanate Scintillating Glasses for X-ray Imaging
5
作者 HUANG Canhui ZHAO Jingtao +3 位作者 BAI Gongxun ZHAO Shilong XU Shiqing HUANG Lihui 《发光学报》 北大核心 2025年第10期1876-1883,共8页
High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding d... High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding density measurement,differential scanning calorimetry(DSC),photoluminescence(PL)spectroscopy,X-ray excited luminescence(XEL)spectroscopy,and fluorescence decay analysis.The densities of the germanate glasses were greater than 6.1 g/cm^(3).Upon excitations of ultraviolet(UV)light and X-rays,the glasses emitted in-tense green emissions.The fluorescence lifetime of the strongest emission peak at 544 nm,measured under 377 nm excitation,ranged from 1.52 ms to 1.32 ms.In the glass specimens,the maximum XEL integral intensity reached roughly 26%of that of the commercially available Bi_(4)Ge_(3)O_(12)(BGO)crystal.These results indicate that Tb^(3+)-doped high-density germanate scintillating glasses hold potential as scintillation materials for X-ray imaging applications. 展开更多
关键词 germanate glass scintillating glass Tb^(3+) luminescent properties high density
在线阅读 下载PDF
Impact of annealing on structural and corrosion resistance properties of Ti_(20)Zr_(20)Hf_(20)Be_(20)Ni_(20)high-entropy metallic glass
6
作者 Ke-Ran Li Pan Gong +5 位作者 Dong-Liang Wang Cheng Zhang Hu Huang Muhammad Yasir Mao Zhang Xin-Yun Wang 《Rare Metals》 2025年第1期565-580,共16页
This study comprehensively investigates the effects of annealing on the structural,electrochemical properties and passivation film characteristics of Ti_(20)Zr_(20)Hf_(20)Be_(20)Ni_(20)(at%)high-entropy metallic glass... This study comprehensively investigates the effects of annealing on the structural,electrochemical properties and passivation film characteristics of Ti_(20)Zr_(20)Hf_(20)Be_(20)Ni_(20)(at%)high-entropy metallic glass(HE-MG).Subjected to various annealing temperatures,the samples were analyzed in a 3.5 wt%NaCl solution to evaluate changes in their microstructure and assess their corrosion resistance.Findings reveal that the HE-MG undergoes multistage crystallization,displaying an amorphous matrix integrated with face centered cubic(FCC)and Ni_(7)Zr_(2)phases between 420 and 500℃,indicating robust thermal stability.Electrochemical assessments identify a critical temperature threshold:Below the glass transition temperature(Tg),the HE-MG maintains excellent corrosion resistance,promoting stable passivation layers.Above Tg,enhanced long-range atomic rearrangement during relaxation increases passivation layer defects and significantly diminishes corrosion resistance.X-ray photoelectron spectroscopy(XPS)analyses show that the primary components of the passivation layer are TiO_(2),ZrO_(2),HfO_(2)and BeO.Increased annealing temperatures lead to enhanced Be and Ni content and decreased Ti,Zr and Hf.Additionally,high mixing entropy and significant atomic size mismatch suppress long-range atomic rearrangement and crystallization.The crystallization begins above Tg by_(20)℃,with crystalline phases evenly distributed within the matrix without drastically affecting corrosion resistance.This investigation highlights the impact of thermal treatment on the properties of HE-MG,contributing valuable insights into optimizing their performance and applications. 展开更多
关键词 High-entropy metallic glass ANNEALING Corrosion resistance glass transition temperature CLUSTER
原文传递
Thermodynamic and mechanical properties of Co -Fe-Ni-Zn-P multicomponent metallic nanoglasses: Some insight into the entropy -stabilized glass-glass interfaces
7
作者 Tian Li Nana Li +1 位作者 Rongxue Luo Guangping Zheng 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1965-1977,共13页
Although the existence of glass–glass interfaces(GGIs)enables improved ductility of metallic nanoglasses(NGs),the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength.Herein,entr... Although the existence of glass–glass interfaces(GGIs)enables improved ductility of metallic nanoglasses(NGs),the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength.Herein,entropy-stabilized GGIs have been in-vestigated in Co–Fe–Ni–Zn–P NGs,which have a large entropy of mixing(1.32R,where R is the gas constant)and could be in a new glass phase,different from that of glassy grain interiors.Through quantitatively determining the activation energy of glass transition sep-arately for the GGIs and glassy grain interiors,the excess free volumes at GGIs are found to be reduced in comparison with those in the glassy grain interiors.The thermodynamically stable GGIs could be associated with increasing entropy of mixing in the GGI regions,which stabilizes the atomic structures of GGIs and enhances the glass forming ability of Co–Fe–Ni–Zn–P NGs.The influences of entropy-stabilized GGIs on the mechanical properties of Co–Fe–Ni–Zn–P NGs are further investigated by nanoindentation and creep tests under tensile deformation,demonstrating that there are notable enhancements in the ductility and mechanical strength for Co–Fe–Ni–Zn–P NGs.This work contributes to an in-depth understanding on the GGI phase in NGs and offers an alternative method for strengthening NGs through GGI engineering. 展开更多
关键词 glassglass interfaces metallic nanoglasses high-entropy effects mechanical properties thermodynamic properties
在线阅读 下载PDF
Vitrohouse.A Demountable House Built Entirely with Flat Glass.Technical,Bioclimatic,and Sustainable Analysis
8
作者 Luis De Garrido 《Journal of Environmental Science and Engineering(B)》 2025年第5期225-254,共30页
This study shows a technical,bioclimatic,and sustainable analysis of the first demountable house built entirely from glass components,Vitrohouse.The technical analysis details the construction challenges overcome to c... This study shows a technical,bioclimatic,and sustainable analysis of the first demountable house built entirely from glass components,Vitrohouse.The technical analysis details the construction challenges overcome to create a demountable house using only flat glass for all components(foundations,slabs,supporting structure,beams,roof,envelope,furnishings,kitchen fixtures,appliances).Secondly,we analyze the thermal and bioclimatic behavior of this demountable all-glass house to evaluate its energy efficiency.We also assess the contribution of Vitrohouse’s bioclimatic design to its sustainability level,using 11 of the most internationally recognized GBRSs(Green Building Rating Systems),demonstrating that it achieves a higher degree of sustainability than a conventional,non-bioclimatic home of the same size.Thirdly,we analyze the contribution of Vitrohouse’s demountable nature,showing that it has a higher level of sustainability than a conventionally built house.Finally,the sustainable analysis of its demountability is quantified using 11 GBRSs.The results show that it is perfectly feasible to construct buildings solely from flat glass,achieving high energy efficiency and sustainability.Furthermore,the glass components can be easily disassembled and reused,or recycled to manufacture new components with minimal energy consumption. 展开更多
关键词 Flat glass construction house made with glass bioclimatic design sustainable assessment demountable construction Green Building Rating System.
在线阅读 下载PDF
Investigation on Clay Based Mullite-silica Rich Glass Composites
9
作者 YAN Wen SHI Jinling LI Nan 《China's Refractories》 2025年第1期18-24,共7页
Mullite-silica rich glass(MSRG)composites are a more efficient material than chamotte for industrial utilization of clay in refractory applications.The properties of the MSRG composites depend on the amount and compos... Mullite-silica rich glass(MSRG)composites are a more efficient material than chamotte for industrial utilization of clay in refractory applications.The properties of the MSRG composites depend on the amount and composition of the mulite and glass phases,which are related to the chemical composition of the MSRG composites based on clay.In the present work,the relationship between the phase and the chemical composition of the MSRG composites,and the effects of the chemical composition of the glass phase on the viscosity and coefficient of thermal expansion(CTE)of the glass phase were discussed on the basis of the measurements on 17 MSRG composite samples produced from clay.It is found that the Al_(2)O_(3)/SiO_(2) ratio(AS ratio)in clay strongly affects the amount of the mullite and glass phases in the MSRG composites,and the distributions of SiO_(2),TiO_(2)and Al_(2)O_(3) contents in the mullite and glass phases.With the increase of the A/S ratio of clay,the mullite content increases but the the glass phase content decreases in the MSRG composites.The viscosity and CTE of the glass phase depend on its A/S ratio and the amount of impurity oxides.When the A/S ratio in the glass phase is less than 0.15,the viscosity of the liquid formed by the melting of the glass phase at elevated temperatures rapidly increases with the decrease in the A/S ratio.The CTE of the glass phase depends on the contents of Si0_(2)and(K_(2)O+Na_(2)O). 展开更多
关键词 mullite-silica rich glass composite composition glass phase VISCOSITY coefficient of thermal expansion
在线阅读 下载PDF
Atomic origin of minor alloying element effect on glass forming ability of metallic glass
10
作者 Shan Zhang Qingan Li +1 位作者 Yong Yang Pengfei Guan 《Chinese Physics B》 2025年第3期483-489,共7页
The glass-forming ability(GFA)of metallic glasses is a key scientific challenge in their development and application,with compositional dependence playing a crucial role.Experimental studies have demonstrated that the... The glass-forming ability(GFA)of metallic glasses is a key scientific challenge in their development and application,with compositional dependence playing a crucial role.Experimental studies have demonstrated that the addition of specific minor elements can greatly enhance the GFA of parent alloys,yet the underlying mechanism remains unclear.In this study,we use the ZrCuAl system as a model to explore how the addition of minor Al influences the crystallization rate by modulating the properties of the crystal-liquid interface,thereby affecting the GFA.The results reveal that the minor addition of Al significantly reduces the crystal growth rate,a phenomenon not governed by particle density fluctuations at the interface.The impact of minor element additions extends beyond a modest increase in crystal-unfavorable motifs in the bulk supercooled liquid.More importantly,it leads to a significant enrichment of these motifs at the crystal-supercooled liquid interface,forming a dense topological network of crystal-unfavorable structures that effectively prevent the growth of the crystalline interface and enhance GFA.Our results provide valuable insights for the design and development of high-performance metallic glasses. 展开更多
关键词 metallic glass glass forming ability interface structure molecular dynamics(MD)
原文传递
Optimization of glass-forming ability and synergistic enhancement of strength plasticity in Cu_(50)Zr_(46)Al_(4)metallic glasses through Ag additions
11
作者 Dongmei Li Zhongyi Zhang +3 位作者 Bolin Shang Rui Feng Xuefeng Li Peng Yu 《Chinese Physics B》 2025年第8期646-650,共5页
Bulk metallic glasses(BMGs)are typically characterized by high strength and elasticity.However,they generally demonstrate a deficiency in plastic deformation capability at room temperatures.In this work,Cu_(50-x)Zr_(4... Bulk metallic glasses(BMGs)are typically characterized by high strength and elasticity.However,they generally demonstrate a deficiency in plastic deformation capability at room temperatures.In this work,Cu_(50-x)Zr_(46)Al4Agx(x=0,1,2,3,4)alloys were prepared by arc melting and copper mold casting to investigate their structure,glass-forming ability,and mechanical properties.The results show that the addition of Ag can increase the parameter of DTx and g in Cu_(50)Zr_(46)Al_(4)alloy by 116%and 1.5%respectively,effectively enhancing its thermal stability and glass-forming ability.Compressive fracture tests reveal that the addition of Ag can significantly improve the yield strength,ultimate strength,and plasticity of the Cu_(50)Zr_(46)Al_(4)alloy.Specifically,with the Ag addition of 1 at.%,the alloy’s ultimate strength and plasticity increased by 71.8%and 21 times,respectively.Furthermore,the introduction of Ag can effectively control the free volume content in the Cu_(50)Zr_(46)Al_(4)alloy,thereby tuning the hardness of the material.This work provides valuable insights into improving the mechanical performance of BMGs through micro-alloying approaches. 展开更多
关键词 metallic glasses glass-forming ability synergistic enhancement strength-plasticity Ag addition
原文传递
Achieving ultrahigh-specific strength and enhanced GFA in Ti-based bulk metallic glasses via a two-step alloying strategy
12
作者 Heng-Tong Bu Jia-Lun Gu +2 位作者 Yun-Shuai Su Yang Shao Ke-Fu Yao 《Rare Metals》 2025年第3期1932-1942,共11页
Ti-based bulk metallic glasses(BMGs)have attracted increasing attention due to their high specific strength.However,a fundamental conflict exists between the specific strength and glass-forming ability(GFA)of Ti-based... Ti-based bulk metallic glasses(BMGs)have attracted increasing attention due to their high specific strength.However,a fundamental conflict exists between the specific strength and glass-forming ability(GFA)of Ti-based BMGs,restricting their commercial applications significantly.In this study,this challenge was addressed by introducing a two-step alloying strategy to mitigate the remarkable density increment effect associated with heavy alloying elements required for enhancing the GFA.Consequently,through two-step alloying with Al and Fe in sequence,simultaneous enhancements in specific strength and GFA were achieved based on a Ti-Zr-Be ternary metallic glass,resulting in the development of a series of centimeter-sized metallic glasses exhibiting ultrahigh-specific strength.Notably,the newly developed(Ti_(45)Zr_(20)Be_(31)A_(l4))_(94)Fe_(6)alloy established a new record for the specific strength of Ti-based BMGs.Along with a critical diameter(D_(c))of 10 mm,it offers the optimal scheme for balancing the specific strength and GFA of Ti-based BMGs.The present results further brighten the application prospects of Ti-based BMGs as lightweight materials. 展开更多
关键词 Ti-based bulk metallic glasses Specific strength glass-forming ability Two-step alloying strategy
原文传递
Effects of MgO/SiO_(2) Ratio on Crystallization Properties of MgSiO_(3) and Mg_(2)SiO_(4) Nanocrystals in Aluminosilicate Glasses
13
作者 GENG Kangkang GUO Yunlan LIU Chao 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期975-983,共9页
Transparent glass-ceramics containing MgSiO_(3)and/or Mg_(2)SiO_(4)nanocrystals were prepared.Effects of MgO/SiO_(2)ratio on crystallization properties of MgSiO_(3)and Mg_(2)SiO_(4)nanocrystals were investigated.When ... Transparent glass-ceramics containing MgSiO_(3)and/or Mg_(2)SiO_(4)nanocrystals were prepared.Effects of MgO/SiO_(2)ratio on crystallization properties of MgSiO_(3)and Mg_(2)SiO_(4)nanocrystals were investigated.When the MgO/SiO_(2)ratio is relatively low,crystallization of MgSiO_(3)is favored,whereas a higher MgO/SiO_(2)ratio tends to promote the crystallization of Mg_(2)SiO_(4).Glass-ceramics are transparent in the visible range due to the small size of the precipitated nanocrystals.Replacing SiO_(2)with MgO results in an increase in Vickers hardness,and the Vickers hardness can be further enhanced through the precipitation of MgSiO_(3)and Mg_(2)SiO_(4)nanocrystals.The findings presented herein are meaningful for the preparation of highly transparent glass-ceramics containing MgSiO_(3)and Mg_(2)SiO_(4)nanocrystals. 展开更多
关键词 glass-CERAMIC MgSiO_(3) Mg_(2)SiO_(4) glass structure vickers hardness
原文传递
Ultra-stable metallic glass generated by modulation of melt state 被引量:2
14
作者 Lu Li Li-Na Hu +4 位作者 Lun-Yong Zhang Zheng Wang Yong-Jiang Huang Yuan-Zheng Yue Jian-Fei Sun 《Rare Metals》 2025年第3期1917-1931,共15页
For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to impr... For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to improve glass stability,shown by increased glass transition temperature(Tg)and crystallization temperature(Tx).This contributes to the development of ultra-stable metallic glasses.Herein,we demonstrate that modulating the quenching temperature can also produce ultra-stable metallic glasses,as evidenced by an increase in Tx of 17-30 K in Cu-based metallic glasses.By modulating the quenching temperature,separated primary phases,secondary phases,and even nano-oxides can be obtained in the metallic glasses.Notably,metastable phases such as Cu-rich precipitates arising from secondary phase separation play a crucial role in enhancing glass stability.However,the enhancement of the stability of the glass has only a negligible effect on its mechanical properties.This study implies that different melt thermodynamic states generated by liquid-liquid separation and transition collectively determine the frozen-in glass structure.The results of this study will be helpful for the development of ultra-stable bulk glasses. 展开更多
关键词 Metallic glass Phase separation Liquid-liquid transition NANOSTRUCTURE Thermal stability
原文传递
一个GLASS综合征家系致病基因的遗传学分析
15
作者 郭敏 郭荣 +5 位作者 高景波 曹桂芝 赵晨玥 岳昊 叶婷 薛慧琴 《山西医科大学学报》 2025年第1期91-97,共7页
目的 分析SATB2基因新剪接位点变异导致GLASS综合征一家系的临床和分子遗传学特征,为遗传咨询提供参考。方法 收集和分析GLASS综合征一家系2例患者临床资料;对先证者及其父母进行全外显子组(whole-exome sequencing,WES)和全基因组拷贝... 目的 分析SATB2基因新剪接位点变异导致GLASS综合征一家系的临床和分子遗传学特征,为遗传咨询提供参考。方法 收集和分析GLASS综合征一家系2例患者临床资料;对先证者及其父母进行全外显子组(whole-exome sequencing,WES)和全基因组拷贝数变异(copy number variation,CNV)的二代测序;使用基于人工智能(AI)模型的突变位点剪接预测工具RNA Splicer对变异进行预测评估。通过国内外文献数据库,回顾1989年1月至2023年9月发表的GLASS综合征相关文献。结果 该家系先证者及其母亲有一致的表型:主要临床表现为智力低下,语言发育严重迟缓,社交能力差;面部畸形(长脸、鼻梁突出、球状鼻尖、人中扁平、小嘴、低位耳)和弯曲指。WES测序显示先证者及其母亲携带SATB2 c.1543-1G>A新剪接位点变异,先证者父亲未携带该变异。国内外关于该疾病的报道共47篇,其中9例患者为剪接位点变异。结论 SATB2基因的新剪接位点变异是该家系患者的致病原因,扩大了SATB2基因的变异谱,为该家系的遗传咨询和产前诊断提供依据。 展开更多
关键词 SATB2基因 glass综合征 SATB2相关综合征 剪接位点变异 Sanger测序 生物信息学分析 全外显子测序分析
暂未订购
Classification and provenance of exotic impact glasses in Chang’e-5 lunar soil 被引量:1
16
作者 YunHong Fan BiWen Wang +3 位作者 Wei Yang QiuLi Li HuiJuan Zhang ShiTou Wu 《Earth and Planetary Physics》 2025年第6期1099-1112,共14页
Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical sign... Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site. 展开更多
关键词 Chang’e-5 impact glass exotic materials CLASSIFICATION PROVENANCE
在线阅读 下载PDF
Impact of Bubbles on Mechanical Performances in a Borosilicate Glass
17
作者 LI Chengxing LI Dongfeng +2 位作者 MA Shilong QIAO Ang ZHENG Qingshuang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期25-29,共5页
To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software ... To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software integrated within the optical microscope,the diameter and number of the bubbles on the surface of three borosilicate glasses were quantified.From the hardness and crack initiation resistance(CR),we built the relationship between the porosity and the mechanical performance of these borosilicate glasses. 展开更多
关键词 BUBBLES oxide glass HARDNESS creak initiation resistance
原文传递
Effect of Bi/Si Ratio of BiBSi Glass on Its Structure, Properties and Laser Sealing Shear Strength for Vacuum Glazing
18
作者 LIU Wei JIAO Jinxu +7 位作者 LUO Dusha ZHOU Junjie SHI Lifen WANG Weiwei LI Changqing WANG Peng XIONG Dehua LI Hong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期13-24,共12页
The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with B... The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa. 展开更多
关键词 Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi) Bi/Si ratio low-melting glass laser sealing vacuum glazing
原文传递
Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization
19
作者 ZHOU Yun-fei ZOU Lin-er +1 位作者 CHENG Yang-bing SHEN Yun 《中国光学(中英文)》 北大核心 2025年第6期1475-1483,共9页
Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making ... Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making broadband achromatic infrared imaging challenging to achieve.In this paper,six different unit structures based on chalcogenide glass are constructed,and their phase-dispersion parameters are analyzed to establish a database.On this basis,using chromatic aberration compensation and parameterized adjoint topology optimization,a broadband achromatic metalens with a numerical aperture of 0.5 is designed by arranging these six unit structures in the far-infrared band.Simulation results show that the metalens achieves near diffraction-limited focusing within the operating wavelength range of 9−11μm,demonstrating the good performance of achromatic aberration with flat focusing efficiency of 54%−58%across all wavelengths. 展开更多
关键词 metalens chalcogenide glass topology optimization high efficiency long wave infrared broadband operation
在线阅读 下载PDF
White Light Emission Enhancement in Sm^(3+)-doped Lithium Aluminum Silicate Glasses by Ag Nanoparticles
20
作者 CHANG Yuanxing ZHANG Dandan +4 位作者 YIN Guanchao WANG Yesen WANG Mingzhong QIU Jianbei XU Yinsheng 《发光学报》 北大核心 2025年第7期1249-1261,共13页
Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cr... Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cross-sections of Sm^(3+)result in low luminous efficiency,posing challenges for achieving high-quality solid-state lighting.Here,the excellent white emission of Sm^(3+)doped lithium aluminum silicate(LAS)glass was realized by introducing the Ag aggregates through Ag ion exchange.Under 395 nm excitation,the Ag-doped samples exhibit significant fluo⁃rescence enhancement with color coordinates close to the equal energy white point E(0.33,0.33)and a color ren⁃dering index(CRI)of 81.8.The study reveals that the surface plasmon resonance(SPR)effect of Ag nanoparticles enhances the luminescence of Sm^(3+),while the energy transfer mechanism between Ag^(+)and Sm^(3+)also promotes fluores⁃cence enhancement.By adjusting the concentration of AgNO_(3) and the exchange time,a series of high-quality full-spectrum white light emissions were obtained,indicating that the Ag ion-exchanged Sm^(3+)-doped LAS glass has good application potential in the development of solid-state lighting devices.Moreover,variations in the excitation wave⁃length can effectively tune the emission color,further demonstrating the tunability and practicality of this material in optoelectronic applications. 展开更多
关键词 Ag NPs luminescent properties rare earth ions lithium aluminum silicate glass
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部