期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的GHSOM聚类算法的图像检索
1
作者
刘稳君
罗健旭
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第2期216-221,共6页
传统的图像检索需要顺序比较图像库中的图像与请求图像的相似度,检索速度和检索准确度都很低。针对此问题,提出了一种基于改进的增长型分层自组织映射网络(GHSOM)的图像检索方法。先将图像特征库用改进的GHSOM算法进行聚类,在图像检索...
传统的图像检索需要顺序比较图像库中的图像与请求图像的相似度,检索速度和检索准确度都很低。针对此问题,提出了一种基于改进的增长型分层自组织映射网络(GHSOM)的图像检索方法。先将图像特征库用改进的GHSOM算法进行聚类,在图像检索时先在GHSOM网络模型上找到相似的类,然后在相似的类上继续进行检索,大大提高了检索效率。并且在搜索相似的类时充分利用GHSOM网络的分层结构,更进一步地提高了检索效率。改进的GHSOM网络根据算法的特点构建了赤迟信息量(AIC)准则,用该准则来选择每个独立的SOM网络的生长参数,使得每个网络都能正确地表达映射到它的数据集的结构,提高GHSOM网络的聚类效果,从而提高检索的准确性。实验结果表明,改进的GHSOM算法得到了更好的聚类效果,基于它的图像检索方法提高了将近3倍的图像匹配速度,同时图像检索准确率也得到了一定程度的提高。
展开更多
关键词
图像检索
聚类
ghsom
算法
在线阅读
下载PDF
职称材料
题名
基于改进的GHSOM聚类算法的图像检索
1
作者
刘稳君
罗健旭
机构
华东理工大学化工过程先进控制和优化技术教育部重点实验室
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第2期216-221,共6页
基金
中央高校基本科研业务费专项资金
文摘
传统的图像检索需要顺序比较图像库中的图像与请求图像的相似度,检索速度和检索准确度都很低。针对此问题,提出了一种基于改进的增长型分层自组织映射网络(GHSOM)的图像检索方法。先将图像特征库用改进的GHSOM算法进行聚类,在图像检索时先在GHSOM网络模型上找到相似的类,然后在相似的类上继续进行检索,大大提高了检索效率。并且在搜索相似的类时充分利用GHSOM网络的分层结构,更进一步地提高了检索效率。改进的GHSOM网络根据算法的特点构建了赤迟信息量(AIC)准则,用该准则来选择每个独立的SOM网络的生长参数,使得每个网络都能正确地表达映射到它的数据集的结构,提高GHSOM网络的聚类效果,从而提高检索的准确性。实验结果表明,改进的GHSOM算法得到了更好的聚类效果,基于它的图像检索方法提高了将近3倍的图像匹配速度,同时图像检索准确率也得到了一定程度的提高。
关键词
图像检索
聚类
ghsom
算法
Keywords
image retrieve
cluster
ghsom algorithm
分类号
TP390.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的GHSOM聚类算法的图像检索
刘稳君
罗健旭
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2015
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部