期刊文献+
共找到13,088篇文章
< 1 2 250 >
每页显示 20 50 100
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
1
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 bp神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
一种基于GA-BP神经网络的冷库能耗预测 被引量:1
2
作者 王雅博 陈君豪 +1 位作者 刘兴华 张行健 《冷藏技术》 2025年第1期79-85,75,共8页
影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建... 影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建基于GA-BP神经网络的冷库能耗模型。结果表明,在缺失货物信息的情况下,使用冷库当天使用面积作为输入变量能够保证模型具有高准确率,R2达到0.9563,并且性能优于BP神经网络、多元回归模型。 展开更多
关键词 能耗预测 特征选择 遗传算法 bp神经网络 机器学习
原文传递
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
3
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 bp神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
4
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSga-Ⅱ算法
在线阅读 下载PDF
基于田口方法与GA-BP神经网络的高速钢轧辊磨削表面粗糙度预测
5
作者 高慧敏 任新意 +3 位作者 艾矫健 黄华贵 周鹏飞 胡淇伟 《上海金属》 2025年第3期86-92,共7页
由于高速钢轧辊磨削表面粗糙度难以预测且精度低,结合田口方法与GA-BP(genetic algorithm-back propagation)神经网络提出了一种预测轧辊磨削表面粗糙度的智能方法。采用田口正交试验设计和信噪比理论,研究了轧辊转速、砂轮速度、横移... 由于高速钢轧辊磨削表面粗糙度难以预测且精度低,结合田口方法与GA-BP(genetic algorithm-back propagation)神经网络提出了一种预测轧辊磨削表面粗糙度的智能方法。采用田口正交试验设计和信噪比理论,研究了轧辊转速、砂轮速度、横移速度和进给量等工艺参数对轧辊表面粗糙度的影响,获得了最优磨削工艺参数。利用遗传算法对BP神经网络中的权值和阈值进行优化,并利用实际生产数据构建了基于GA-BP神经网络的预测高速钢轧辊磨削表面粗糙度模型。与实测结果的对比表明,该模型具有良好的适用性和预测精度,可为高速钢轧辊表面粗糙度的精准控制提供参考。 展开更多
关键词 热轧 磨削 田口方法 ga-bp神经网络 表面粗糙度
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
6
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 bp神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于GA-BP神经网络的商品导购类账号价值评估
7
作者 赖玥 余恺贤 《商业观察》 2025年第31期20-24,共5页
直播带货行业的火热发展推动了商品导购类账号交易行为的出现,合理评估该类账号的价值不仅能为消费者的购物决策提供参考,也有助于品牌合作与商业变现。文章首先分析了商品导购类账号的价值评估问题,然后比较三大基本评估方法,发现该类... 直播带货行业的火热发展推动了商品导购类账号交易行为的出现,合理评估该类账号的价值不仅能为消费者的购物决策提供参考,也有助于品牌合作与商业变现。文章首先分析了商品导购类账号的价值评估问题,然后比较三大基本评估方法,发现该类账号更适用于收益法。为了预测商品导购类账号的未来预期收入,文章构建了遗传算法优化BP神经网络模型,解决了传统的BP神经网络模型精度低的问题。最后,文章选取“交个朋友”账号进行案例分析,评估结果显示,遗传算法优化BP神经网络模型能使评估值更合理。 展开更多
关键词 遗传算法 bp神经网络 账号价值评估 账号收入预测
在线阅读 下载PDF
基于RF-GA-BPNN算法的供应链风险预警研究
8
作者 王红春 周子祥 《工业工程》 2025年第2期120-128,共9页
供应链系统时刻面临着来自内外部环境的多重风险与挑战,目前供应链风险预警算法在指标选取、阈值优化等方面尚存不足。为进一步提升供应链风险预警能力,关注算法融合优化及其预警效果,构建基于RF-GABPNN算法的供应链风险预警模型。该模... 供应链系统时刻面临着来自内外部环境的多重风险与挑战,目前供应链风险预警算法在指标选取、阈值优化等方面尚存不足。为进一步提升供应链风险预警能力,关注算法融合优化及其预警效果,构建基于RF-GABPNN算法的供应链风险预警模型。该模型有机结合随机森林、遗传算法、BP神经网络等多类算法的特性与优势,通过指标特征重要性筛选、初始参数优化等手段改进BP神经网络预测效果。利用中国A股3309家上市企业的风险预警指标数据集对模型进行训练与测试,结果表明RF-GA-BPNN算法在300组随机样本数据的训练下,预警准确率可达96.50%。基于RF-GA-BPNN算法的供应链风险预警模型具有较优秀的学习能力和预警能力,预测结果可为供应链风险水平的初期判断以及风险抵御措施的制定实施提供数值参考。 展开更多
关键词 供应链 风险预警 随机森林 遗传算法 bp神经网络
在线阅读 下载PDF
GA-BP模型在HSS模型参数取值中的应用
9
作者 张杰 马杰 +2 位作者 陈啸海 钟鹏 王营营 《城市道桥与防洪》 2025年第1期229-235,共7页
小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小... 小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小应变参数的预测方法,采用经过遗传算法优化的BP神经网络模型,即GA-BP神经网络模型,首先根据预设的小应变参数水平经过数值模拟计算得到49组位移数据,然后将得到的数据用于GA-BP神经网络的训练,待GA-BP神经网络的预测误差达到要求之后,再使用实际的位移数据反演得到小应变参数,最后基于预测得到的小应变参数进行数值模拟。结果显示,GA-BP神经网络模型预测的小应变参数在基坑围护结构最大水平位移和地表最大沉降计算方面表现良好,可以应用于实际工程。 展开更多
关键词 岩土工程 遗传算法 HSS模型 bp神经网络 小应变参数 参数反演
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
10
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-bp神经网络 遗传算法
在线阅读 下载PDF
基于GA-BP算法的汽车前端框架翘曲变形优化及验证 被引量:2
11
作者 林煌旭 孔选 +3 位作者 陆将男 周华江 朱国常 朱浩伟 《工程塑料应用》 北大核心 2025年第1期90-97,共8页
针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺... 针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺参数与翘曲变形量之间的映射关系并建立单目标非线性优化模型。利用GA遗传算法改良的BP神经网络进一步描述优化模型的非线性函数关系,以适应度曲线迭代收敛预测得到最佳的BP网络模型预测工艺参数分别为:模具温度60℃、熔体温度265℃、保压压力55MPa、保压时间4s、冷却时间35s,最大翘曲变形量为1.191mm。最后将最优工艺参数导入Moldflow中模拟得到最大翘曲变形量为1.33mm,较优化前初始翘曲量2.423 mm降低了45.1%。经GA-BP算法优化后的工艺参数应用于生产制造过程,前端框架注塑件偏差测量结果表明,实际测量值与优化后Moldflow模拟值拟合度较高,两者平均偏差为0.28mm,满足整车装配要求,证实了GA-BP神经网络预测模型用于优化前端框架翘曲变形的可行性。 展开更多
关键词 汽车前端框架 翘曲变形 MOLDFLOW 正交试验法 ga遗传算法 bp神经网络模型
在线阅读 下载PDF
响应面法与GA-BP神经网络联合优化细菌降解石油烃参数研究 被引量:1
12
作者 鲁钧豪 孙先锋 +2 位作者 王致桦 宋柯 吴蔓莉 《现代化工》 北大核心 2025年第4期102-109,共8页
采用单因素法考察环境因子对石油烃降解率的影响,以石油烃降解率为响应值,利用响应面法(RSM)和遗传算法优化反向传播(GA-BP)神经网络和石油烃降解条件,并对优化结果进行对比。结果表明,目标菌株BM-1为蕈状芽孢杆菌(Bacillus mycoides),... 采用单因素法考察环境因子对石油烃降解率的影响,以石油烃降解率为响应值,利用响应面法(RSM)和遗传算法优化反向传播(GA-BP)神经网络和石油烃降解条件,并对优化结果进行对比。结果表明,目标菌株BM-1为蕈状芽孢杆菌(Bacillus mycoides),经GA-BP神经网络优化后的最优降解条件为:温度为35.10℃、pH为7.96、菌液接种量为5.17%、初始原油质量分数为1.02%,该条件下石油烃降解率的试验值可达(63.15±0.73)%,而GA-BP神经网络的预测值为63.4926%,预测值与试验值之间相对误差仅0.54%,模型整体拟合度较高(R=0.976 06),说明应用GA-BP神经网络优化石油烃降解条件合理可行。 展开更多
关键词 石油烃降解 响应面法 条件优化 ga-bp神经网络
原文传递
基于GA-BP神经网络的边坡变形预测 被引量:1
13
作者 谭文辉 李凯 +2 位作者 刘慧敏 蔡美峰 郭奇峰 《工程科学学报》 北大核心 2025年第4期594-605,共12页
露天矿山高边坡的变形预测是保障矿山安全生产的重要手段.本文以西藏某矿山边坡为对象,采用高精度合成孔径干涉雷达对矿区南帮边坡进行了全天候位移监测,分析了边坡变形的基本规律;采用小波降噪理论对采集的时序位移监测数据进行了降噪... 露天矿山高边坡的变形预测是保障矿山安全生产的重要手段.本文以西藏某矿山边坡为对象,采用高精度合成孔径干涉雷达对矿区南帮边坡进行了全天候位移监测,分析了边坡变形的基本规律;采用小波降噪理论对采集的时序位移监测数据进行了降噪处理,并且为了避免预测模型陷入局部极小值,引入遗传算法(即GA算法)整合进BP神经网络的训练步骤中,用于优化BP神经网络的初始权值和阈值设置,建立了GA-BP神经网络边坡变形时序预测模型,并与BP神经网络边坡变形时序预测模型进行对比分析.研究结果表明:GA-BP模型较BP模型的预测精度提高了10%以上,预测的平均误差减少了50%以上,而且预测的边坡变形趋势与监测值吻合程度更高;GA-BP模型较BP模型收敛速度加快10倍以上,GA-BP模型的回归系数、模型适应度优于BP模型.因此,采用GA-BP模型可使边坡变形预测的精度、收敛速度、泛化能力均得到提高,预测结果更为可靠,可为矿山边坡安全生产提供保障. 展开更多
关键词 露天矿边坡 变形预测 bp神经网络 遗传算法 时间序列
在线阅读 下载PDF
基于特征工程和GA-BP神经网络的气体超声流量计使用中检验方法的研究 被引量:1
14
作者 金宇强 李春辉 +1 位作者 黄震威 谢代梁 《计量学报》 北大核心 2025年第6期884-890,共7页
气体超声流量计是天然气输气站的关键计量器具,检定法和使用中检验法是判定流量计计量性能的主要方法,基于机器学习的使用中检验方法是解决检定法局限性的有效手段。针对天然气现场应用过程中机器学习算法在模型构建和特征冗余较大,部... 气体超声流量计是天然气输气站的关键计量器具,检定法和使用中检验法是判定流量计计量性能的主要方法,基于机器学习的使用中检验方法是解决检定法局限性的有效手段。针对天然气现场应用过程中机器学习算法在模型构建和特征冗余较大,部分检定流量点模型表现欠佳的问题,提出了一种基于特征工程和遗传算法优化的BP神经网络方法。特征选择作为特征工程中的关键,通过综合3种不同类别的特征选择算法对超声流量计性能参数进行分析筛选,在保持关键特征参数和模型性能的基础上,减少冗余特征,将初始的17个特征降至9个;同时利用遗传算法对BP模型的泛化能力进行了优化。研究结果表明,经过优化的模型相较于传统模型表现出较为显著的提升,最高预测准确度提升达33%。 展开更多
关键词 流量计量 超声流量计 使用中检验 机器学习 特征工程 ga-bp神经网络
在线阅读 下载PDF
GA-BP神经网络在精准刻画场地地下水污染物扩散范围的应用研究 被引量:1
15
作者 季佳运 肖霄 +2 位作者 杨品璐 刘洋 周亚红 《岩矿测试》 北大核心 2025年第3期406-419,共14页
自2021年最新生态环境损害鉴定评估指南发布实施以来,对地下水中污染物(如铬、铅、铁、锰等污染物)的扩散范围刻画的精度要求越来越高。受研究区场地条件限制,采样点无法完全分布均匀,现有插值方法难以解决采样点分布不均而导致扩散范... 自2021年最新生态环境损害鉴定评估指南发布实施以来,对地下水中污染物(如铬、铅、铁、锰等污染物)的扩散范围刻画的精度要求越来越高。受研究区场地条件限制,采样点无法完全分布均匀,现有插值方法难以解决采样点分布不均而导致扩散范围刻画不准确的问题。本文通过ArcGIS空间插值图展示某化工园区地下水溶质的空间分布,发现Mn^(2+)离子分布与其形成机制规律相差较大,且尝试使用GIS多种插值方法(如克里金法、反距离权重法、样条函数等插值方法)效果均不理想,其扩散方向与研究区地下水流向及形成机理不符,可能是由于其监测点位分布不均。因此以重金属Mn^(2+)为例,使用GA-BP神经网络与标准BP神经网络对园区各点位Mn^(2+)浓度进行回归预测,建立其浓度与空间分布的神经网络模型,选取拟合程度较好的神经网络模型对监测点位缺失区域进行浓度预测,并结合空间插值圈定化工园区中心Mn^(2+)的扩散范围,同时用Mn^(2+)的产生机制对扩散范围进行验证。结果表明:GA-BP神经网络的Mn^(2+)浓度预测效果最好,使用其补充监测点缺失位置的Mn^(2+)浓度并重新绘制Mn^(2+)浓度分布图,新Mn^(2+)分布图显示化工园区中心Mn^(2+)扩散范围为1.70×10^(6)m^(2),超出化工园区面积为2.13×10^(5)m^(2)。与优化前的扩散范围相比,校正后的扩散范围符合Mn^(2+)产生和运移规律。GA-BP神经网络对场地地下水污染物扩散范围的精确圈定有较好的辅助效果,可为环境污染评估提供更加科学有效的方法支持。 展开更多
关键词 地下水 化工园区 ga-bp神经网络 扩散范围
在线阅读 下载PDF
基于GA-BP神经网络的声学覆盖层吸声性能预测 被引量:1
16
作者 阮久文 陶猛 王广玮 《机械设计与制造》 北大核心 2025年第4期1-5,共5页
提出了一种基于遗传算法优化的BP神经网络(GA-BP)对声学覆盖层吸声性能的预测的方法。基于含圆柱型空腔吸声覆盖层的二维解析理论的简化计算方法,通过使用吸声覆盖层粘弹性阻尼材料的密度、杨氏模量、泊松比、损失因子等参数推导出圆柱... 提出了一种基于遗传算法优化的BP神经网络(GA-BP)对声学覆盖层吸声性能的预测的方法。基于含圆柱型空腔吸声覆盖层的二维解析理论的简化计算方法,通过使用吸声覆盖层粘弹性阻尼材料的密度、杨氏模量、泊松比、损失因子等参数推导出圆柱-圆台组合型空腔覆盖层的反射系数,生成样本集。将GA-BP的适应度函数中搭建BP神经网络(BPNN)的部分用一种计算方法代替,用该方法计算后的实际值与预测值的误差的平方和作为适应度函数值,减少了GA-BP的寻优时间。预测结果表明GA-BP预测模型的对含圆柱空腔吸声覆盖层的性能预测是可行的,GA-BP预测值优于BPNN,稳定性更高,更接近于理论值。 展开更多
关键词 圆柱-圆台组合型空腔覆盖层 二维解析理论 遗传算法 bp神经网络
在线阅读 下载PDF
基于AHP-熵权法的正交试验和GA-BP神经网络优选关节止痛汤提取工艺 被引量:1
17
作者 白淑贤 王单单 +3 位作者 吴作敏 于晓涛 金少举 王瑞 《中国现代中药》 2025年第2期310-317,共8页
目的:优选关节止痛汤的提取工艺。方法:在单因素考察的基础上,以加水量、提取时间、提取次数为考察因素,以京尼平苷酸、松脂醇二葡萄糖苷、阿魏酸、杯苋甾酮的含量和出膏率为评价指标,采用层次分析法(AHP)-熵权法确定各指标权重。通过... 目的:优选关节止痛汤的提取工艺。方法:在单因素考察的基础上,以加水量、提取时间、提取次数为考察因素,以京尼平苷酸、松脂醇二葡萄糖苷、阿魏酸、杯苋甾酮的含量和出膏率为评价指标,采用层次分析法(AHP)-熵权法确定各指标权重。通过正交试验和遗传算法(GA)-反向传播(BP)神经网络法优选关节止痛汤的提取工艺参数,并对2种方法所得工艺参数进行验证比较。结果:正交试验所得最佳工艺参数为加水量6倍、提取时间0.5 h、提取3次,综合评分为90.21(RSD为1.38%);GA-BP神经网络优化得到的最佳工艺参数为加水量6倍、提取时间1.5 h、提取4次,综合评分为99.26(RSD为0.09%),结合实际生产需求,最终确定关节止痛汤的最佳提取工艺参数为加水量6倍、提取时间0.5 h、提取3次。结论:采用正交试验结合GA-BP神经网络所优选的提取工艺参数稳定、可靠,可为后续研发提供参考。 展开更多
关键词 关节止痛汤 层次分析法-熵权法 正交试验 遗传算法-反向传播神经网络
暂未订购
基于GA-BP算法的锂电池辊压机设计
18
作者 汪婷婷 顾佳丽 +3 位作者 王远鹏 张训 吕万年 杨进民 《科技创新与生产力》 2025年第4期102-104,共3页
随着新能源产业的不断发展,电池作为其最核心的部分,其使用寿命、安全性等参数一直是一个严峻的问题。电池的质量在很大程度上取决于电极的质量。本文提出的辊压机是基于GA-BP算法来精确控制辊缝的。采用全闭环控制系统,控制精度可达... 随着新能源产业的不断发展,电池作为其最核心的部分,其使用寿命、安全性等参数一直是一个严峻的问题。电池的质量在很大程度上取决于电极的质量。本文提出的辊压机是基于GA-BP算法来精确控制辊缝的。采用全闭环控制系统,控制精度可达±1μm以内。与传统的辊压机设备相比,其整体效率、稼动率和带来的收益都有了一定的提高。 展开更多
关键词 辊轧机 辊缝 ga-bp算法
在线阅读 下载PDF
基于SSA-GA-BP神经网络的激光三角法测量误差研究
19
作者 肖清浩 董祉序 +2 位作者 孙兴伟 杨赫然 刘寅 《仪表技术与传感器》 北大核心 2025年第8期19-24,共6页
针对激光位移传感器在采用激光三角法测量时,由被测表面特性引发的测量误差问题,提出了一种结合神经网络与优化算法的误差预测方法。以BP神经网络为基本架构,运用遗传算法(GA)优化神经网络性能,然而优化后的网络仍有局限性,进而引入麻... 针对激光位移传感器在采用激光三角法测量时,由被测表面特性引发的测量误差问题,提出了一种结合神经网络与优化算法的误差预测方法。以BP神经网络为基本架构,运用遗传算法(GA)优化神经网络性能,然而优化后的网络仍有局限性,进而引入麻雀搜索算法(SSA)对GA-BP网络实施二次优化,构建出SSA-GA-BP误差预测模型。通过设计误差试验采集数据,并采用该模型对数据进行训练与测试。为评估模型性能,对比不同算法的输出误差,并将决定系数、均方根误差和平均绝对误差作为评估标准。结果显示,SSA-GA-BP算法预测精度较高,与实验值拟合效果良好。相较于其他模型,SSA-GA-BP模型具有更高的预测精度和更强的泛化能力,为后续误差补偿提供了方法。 展开更多
关键词 激光三角法 误差预测 遗传算法 麻雀搜索算法 bp神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部