As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a...As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.展开更多
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e...BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification.展开更多
With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research s...With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
Numerical challenges,incorporating non-uniqueness,non-convexity,undefined gradients,and high curvature,of the positive level sets of yield function are encountered in stress integration when utilizing the return-mappi...Numerical challenges,incorporating non-uniqueness,non-convexity,undefined gradients,and high curvature,of the positive level sets of yield function are encountered in stress integration when utilizing the return-mapping algorithm family.These phenomena are illustrated by an assessment of four typical yield functions:modified spatially mobilized plane criterion,Lade criterion,Bigoni-Piccolroaz criterion,and micromechanics-based upscaled Drucker-Prager criterion.One remedy to these issues,named the"Hop-to-Hug"(H2H)algorithm,is proposed via a convexification enhancement upon the classical cutting-plane algorithm(CPA).The improved robustness of the H2H algorithm is demonstrated through a series of integration tests in one single material point.Furthermore,a constitutive model is implemented with the H2H algorithm into the Abaqus/Standard finite-element platform.Element-level and structure-level analyses are carried out to validate the effectiveness of the H2H algorithm in convergence.All validation analyses manifest that the proposed H2H algorithm can offer enhanced stability over the classical CPA method while maintaining the ease of implementation,in which evaluations of the second-order derivatives of yield function and plastic potential function are circumvented.展开更多
The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G en...The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G envisions a hyper-connected environment that supports ubiquitous intelligence through ultra-low latency,high throughput,massive device connectivity,and integrated sensing and communication.On the other hand,generative AI,powered by large foundation models,has emerged as a powerful paradigm capable of creating.展开更多
In the era of big data,personalised recommendation systems are essential for enhancing user engagement and driving business growth.However,traditional recommendation algorithms,such as collaborative filtering,face sig...In the era of big data,personalised recommendation systems are essential for enhancing user engagement and driving business growth.However,traditional recommendation algorithms,such as collaborative filtering,face significant challenges due to data sparsity,algorithm scalability,and the difficulty of adapting to dynamic user preferences.These limitations hinder the ability of systems to provide highly accurate and personalised recommendations.To address these challenges,this paper proposes a clustering-based recommendation method that integrates an enhanced Grasshopper Optimisation Algorithm(GOA),termed LCGOA,to improve the accuracy and efficiency of recommendation systems by optimising cluster centroids in a dynamic environment.By combining the K-means algorithm with the enhanced GOA,which incorporates a Lévy flight mechanism and multi-strategy co-evolution,our method overcomes the centroid sensitivity issue,a key limitation in traditional clustering techniques.Experimental results across multiple datasets show that the proposed LCGOA-based method significantly outperforms conventional recommendation algorithms in terms of recommendation accuracy,offering more relevant content to users and driving greater customer satisfaction and business growth.展开更多
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo...BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.展开更多
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode...To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.展开更多
Construction of accurate and high-density linkage maps is a key research area of genetics.We investigated the efficiency of genetic map construction(MAP)using modifications of the k-Optimal(k-Opt)algorithm for solving...Construction of accurate and high-density linkage maps is a key research area of genetics.We investigated the efficiency of genetic map construction(MAP)using modifications of the k-Optimal(k-Opt)algorithm for solving the traveling-salesman problem(TSP).For TSP,different initial routes resulted in different optimal solutions.The most optimal solution could be found only by use of as many initial routes as possible.But for MAP,a large number of initial routes resulted in one optimal order.k-Opt using open route length gave a slightly higher proportion of correct orders than the method of adding one virtual marker and using closed route length.Recombination frequency(REC)and logarithm of odds(LOD)score gave similar proportions of correct order,higher than that given by genetic distance.Both missing markers and genotyping error reduced ordering accuracy,but the best order was still achieved with high probability by comparison of the optimal orders from multiple initial routes.Computation time increased rapidly with marker number,and 2-Opt took much less time than 3-Opt.The 2-Opt algorithm was compared with ordering methods used in two other software packages.The best method was 2-Opt using open route length as the criterion to identify the optimal order and using REC or LOD as the measure of distance between markers.We describe a unified software interface for using k-Opt in high-density linkage map construction for a wide range of genetic populations.展开更多
基金supported by the National Natural Science Foundation of China(Grant Number 61573264).
文摘As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.
基金Supported by Beijing Hospitals Authority Youth Programme,No.QML20200505.
文摘BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification.
文摘With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金supported by the National Natural Science Foundation of China (Grant Nos.12372376 and U22A20596).
文摘Numerical challenges,incorporating non-uniqueness,non-convexity,undefined gradients,and high curvature,of the positive level sets of yield function are encountered in stress integration when utilizing the return-mapping algorithm family.These phenomena are illustrated by an assessment of four typical yield functions:modified spatially mobilized plane criterion,Lade criterion,Bigoni-Piccolroaz criterion,and micromechanics-based upscaled Drucker-Prager criterion.One remedy to these issues,named the"Hop-to-Hug"(H2H)algorithm,is proposed via a convexification enhancement upon the classical cutting-plane algorithm(CPA).The improved robustness of the H2H algorithm is demonstrated through a series of integration tests in one single material point.Furthermore,a constitutive model is implemented with the H2H algorithm into the Abaqus/Standard finite-element platform.Element-level and structure-level analyses are carried out to validate the effectiveness of the H2H algorithm in convergence.All validation analyses manifest that the proposed H2H algorithm can offer enhanced stability over the classical CPA method while maintaining the ease of implementation,in which evaluations of the second-order derivatives of yield function and plastic potential function are circumvented.
文摘The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G envisions a hyper-connected environment that supports ubiquitous intelligence through ultra-low latency,high throughput,massive device connectivity,and integrated sensing and communication.On the other hand,generative AI,powered by large foundation models,has emerged as a powerful paradigm capable of creating.
基金Natural Science Research Project of Education Department of Anhui Province of China,Grant/Award Number:2023AH051020Key Project of Anhui Province's Science and Technology Innovation Tackle Plan,Grant/Award Number:202423k09020040+3 种基金National Key Research and Development Program of China,Grant/Award Number:2023YFD1802200Natural Science Foundation of Anhui Province,Grant/Award Number:2308085MF21National Natural Science Foundation of China,Grant/Award Numbers:32472007,62301006,62306008University Synergy Innovation Program of Anhui Province,Grant/Award Number:GXXT-2022-046。
文摘In the era of big data,personalised recommendation systems are essential for enhancing user engagement and driving business growth.However,traditional recommendation algorithms,such as collaborative filtering,face significant challenges due to data sparsity,algorithm scalability,and the difficulty of adapting to dynamic user preferences.These limitations hinder the ability of systems to provide highly accurate and personalised recommendations.To address these challenges,this paper proposes a clustering-based recommendation method that integrates an enhanced Grasshopper Optimisation Algorithm(GOA),termed LCGOA,to improve the accuracy and efficiency of recommendation systems by optimising cluster centroids in a dynamic environment.By combining the K-means algorithm with the enhanced GOA,which incorporates a Lévy flight mechanism and multi-strategy co-evolution,our method overcomes the centroid sensitivity issue,a key limitation in traditional clustering techniques.Experimental results across multiple datasets show that the proposed LCGOA-based method significantly outperforms conventional recommendation algorithms in terms of recommendation accuracy,offering more relevant content to users and driving greater customer satisfaction and business growth.
基金Supported by the Wuxi Municipal Health Commission Major Project,No.Z202107。
文摘BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.
基金co-supported by the National Natural Science Foundation of China(Nos.52405293,52375237)China Postdoctoral Science Foundation(No.2024M754219)Shaanxi Province Postdoctoral Research Project Funding,China。
文摘To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.
基金This work was supported by the National Natural Science Foundation of China(31861143003)HarvestPlus(part of the CGIAR Research Program on Agriculture for Nutrition and Health,http://www.harvestplus.org/).
文摘Construction of accurate and high-density linkage maps is a key research area of genetics.We investigated the efficiency of genetic map construction(MAP)using modifications of the k-Optimal(k-Opt)algorithm for solving the traveling-salesman problem(TSP).For TSP,different initial routes resulted in different optimal solutions.The most optimal solution could be found only by use of as many initial routes as possible.But for MAP,a large number of initial routes resulted in one optimal order.k-Opt using open route length gave a slightly higher proportion of correct orders than the method of adding one virtual marker and using closed route length.Recombination frequency(REC)and logarithm of odds(LOD)score gave similar proportions of correct order,higher than that given by genetic distance.Both missing markers and genotyping error reduced ordering accuracy,but the best order was still achieved with high probability by comparison of the optimal orders from multiple initial routes.Computation time increased rapidly with marker number,and 2-Opt took much less time than 3-Opt.The 2-Opt algorithm was compared with ordering methods used in two other software packages.The best method was 2-Opt using open route length as the criterion to identify the optimal order and using REC or LOD as the measure of distance between markers.We describe a unified software interface for using k-Opt in high-density linkage map construction for a wide range of genetic populations.