Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ...Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.展开更多
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso...This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.展开更多
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the ...In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the complexity of transportation costs and demand,this study presents a novel method that offers flexible routing alternatives to manage these complexities.When real-world variables such as fluctuating costs,variable capacity,and unpredictable demand are considered,traditional transshipment models often prove inadequate.To overcome these challenges,we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers.This framework allows for more adaptable and flexible decision-making in multi-objective transshipment situations by effectively capturing uncertain parameters.To overcome these challenges,we develop an innovative,fully fuzzy-based framework using LR flat fuzzy numbers to effectively capture uncertainty in key parameters,offering more flexible and adaptive decision-making in multi-objective transshipment problems.The proposed model also presents alternative route options,giving decisionmakers a range of choices to satisfy multiple requirements,including reducing costs,improving service quality,and expediting delivery.Through extensive numerical experiments,we demonstrate that the model can achieve greater adaptability,efficiency,and flexibility than standard approaches.This multi-path structure provides additional flexibility to adapt to dynamic network conditions.Using ranking strategies,we compared our multi-objective transshipment model with existing methods.The results indicate that,while traditional methods such as goal and fuzzy programming generate results close to the anti-ideal value,thus reducing their efficiency,our model produces solutions close to the ideal value,thereby facilitating better decision making.By combining dynamic routing alternatives with a fully fuzzybased approach,this study offers an effective tool to improve decision-making and optimize complex networks under real-world conditions in practical settings.In this paper,we utilize LINGO 18 software to solve the provided numerical example,demonstrating the effectiveness of the proposed method.展开更多
In the evolving landscape of secure communication,steganography has become increasingly vital to secure the transmission of secret data through an insecure public network.Several steganographic algorithms have been pr...In the evolving landscape of secure communication,steganography has become increasingly vital to secure the transmission of secret data through an insecure public network.Several steganographic algorithms have been proposed using digital images with a common objective of balancing a trade-off between the payload size and the quality of the stego image.In the existing steganographic works,a remarkable distortion of the stego image persists when the payload size is increased,making several existing works impractical to the current world of vast data.This paper introduces FuzzyStego,a novel approach designed to enhance the stego image’s quality by minimizing the effect of the payload size on the stego image’s quality.In line with the limitations of traditional methods like Pixel Value Differencing(PVD),Transform Domain Techniques,and Least Significant Bit(LSB)insertion,such as image quality degradation,vulnerability to processing attacks,and restricted capacity,FuzzyStego utilizes fuzzy logic to categorize pixels into intensity levels:Low(L),Medium-Low(ML),Medium(M),Medium-High(MH),and High(H).This classification enables adaptive data embedding,minimizing detectability by adjusting the hidden bit count according to the intensity levels.Experimental results show that FuzzyStego achieves an average Peak Signal-to-Noise Ratio(PSNR)of 58.638 decibels(dB)and a Structural Similarity Index Measure(SSIM)of almost 1.00,demonstrating its promising capability to preserve image quality while embedding data effectively.展开更多
The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arj...The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arjunanadi River basin,South India.Fluoride levels in the study area vary between 0.1 and 3.10 mg/L,with 32 samples exceeding the World Health Organization(WHO)standard of 1.5 mg/L.Hydrogeochemical analyses(Durov and Gibbs)clearly show that the overall water chemistry is primarily influenced by simple dissolution,mixing,and rock-water interactions,indicating that geogenic sources are the predominant contributors to fluoride in the study area.Around 446.5 km^(2)is considered at risk.In predictive analysis,five Machine Learning(ML)models were used,with the AdaBoost model performing better than the other models,achieving 96%accuracy and 4%error rate.The Traditional Health Risk Assessment(THRA)results indicate that 65%of samples pose highly susceptible for dental fluorosis,while 12%of samples pose highly susceptible for skeletal fluorosis in young age groups.The Fuzzy Inference System(FIS)model effectively manages ambiguity and linguistic factors,which are crucial when addressing health risks linked to groundwater fluoride contamination.In this model,input variables include fluoride concentration,individual age,and ingestion rate,while output variables consist of dental caries risk,dental fluorosis,and skeletal fluorosis.The overall results indicate that increased ingestion rates and prolonged exposure to contaminated water make adults and the elderly people vulnerable to dental and skeletal fluorosis,along with very young and young age groups.This study is an essential resource for local authorities,healthcare officials,and communities,aiding in the mitigation of health risks associated with groundwater contamination and enhancing quality of life through improved water management and health risk assessment,aligning with Sustainable Development Goals(SDGs)3 and 6,thereby contributing to a cleaner and healthier society.展开更多
In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian sy...In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.展开更多
To enable representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called the fuzzy description logics with comparison expressi...To enable representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called the fuzzy description logics with comparison expressions (FCDLs) is presented. The syntax and semantics of FCDLs are formally defined, and the forms of axioms and assertions in FCDLs knowledge bases are specified. FCDLs combine both fuzzy concepts from the fuzzy description logics (FDLs) and cut concepts from the extended fuzzy description logics (EFDLs) in the same theory. Furthermore, cut concepts are extended into comparison cut concepts in FCDLs to represent comparison expressions between fuzzy membership degrees, which are often used in practice but not supported by the other fuzzy extensions of description logics. FCDLs have more expressive power than FDLs and EFDLs, and are able to represent expressive fuzzy knowledge and to perform reasoning tasks based on them. Therefore, FCDLs can enable representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.展开更多
In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mob...In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.展开更多
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N...This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model.展开更多
Large-scale mobile social networks(MSNs)facilitate communications through mobile devices.The users of these networks can use mobile devices to access,share and distribute information.With the increasing number of user...Large-scale mobile social networks(MSNs)facilitate communications through mobile devices.The users of these networks can use mobile devices to access,share and distribute information.With the increasing number of users on social networks,the large volume of shared information and its propagation has created challenges for users.One of these challenges is whether users can trust one another.Trust can play an important role in users'decision making in social networks,so that,most people share their information based on their trust on others,or make decisions by relying on information provided by other users.However,considering the subjective and perceptive nature of the concept of trust,the mapping of trust in a computational model is one of the important issues in computing systeins of social networks.Moreover,in social networks,various communities may exist regarding the relationships between users.These connections and communities can affect trust among users and its complexity.In this paper,using user characteristics on social networks,a fuzzy clustering method is proposed and the trust between users in a cluster is computed using a computational model.Moreover,through the processes of combination,transition and aggregation of trust,the trust value is calculated between users who are not directly connected.Results show the high performance of the proposed trust inference method.展开更多
The control of the clutch engagement for an automatic mechanical transmission in the process of a tracklayer getting to start is studied. The dynamic model of power transmission and automatic clutch system is develope...The control of the clutch engagement for an automatic mechanical transmission in the process of a tracklayer getting to start is studied. The dynamic model of power transmission and automatic clutch system is developed. Using tools of Simulink, the transient characteristics during the vehicle starting, including the jerk and the clutch slip time, are provided here. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed to control the clutch engagement. Simulation results verify its value.展开更多
To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is present...To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is presented. The definition of vague set is introduced and then the syntax and semantics of vague ALC are formally defined. The forms of axioms and assertions in the vague ALC knowledge bases are specified. Finally, the tableau algorithm is developed for the reasoning in the vague ALC. The vague ALC based on vague set uses two degrees of membership instead of a single membership degree in the fuzzy sets and is more accurate in representing the imprecision in the degrees of membership. The vague ALC has more expressive power than ALC and can represent fuzzy knowledge and perform reasoning tasks based on them. Therefore, the vague ALC can enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.展开更多
Fuzziness is an internal property of spatial objects.How to model fuzziness of a spatial object is a main task of next generation GIS.This paper proposes basic fuzzy spatial object types based on fuzzy topology.These ...Fuzziness is an internal property of spatial objects.How to model fuzziness of a spatial object is a main task of next generation GIS.This paper proposes basic fuzzy spatial object types based on fuzzy topology.These object types are the natural extension of current nonfuzzy spatial object types.A fuzzy cell complex structure is defined for modeling fuzzy regions,lines and points.Furthermore,fuzzy topological relations between these fuzzy spatial objects are formalized based on the 9intersection approach.This model can be implemented for GIS applications due to its scientific theory basis.展开更多
To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ...To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.展开更多
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
[Objective] This study was to evaluate the ecological suitability of agricultural land in western Jilin Province, with the aim to provide basis for the effective application of agricultural resources and the structura...[Objective] This study was to evaluate the ecological suitability of agricultural land in western Jilin Province, with the aim to provide basis for the effective application of agricultural resources and the structural adjustment of land use. [Method] The evaluation index system was constructed based on fuzzy mathematic method according to the principles of systematic, dominant, effectiveness and feasibility; based on law of tolerance, reasonable evaluation criteria were determined according to the ecological amplitude of crops; based on GIS processing, the initial data completed the mathematical operation by using the VBA program in Excel. [Result] The area of agricultural land grade I was 5 512 km2, grade II of 25 985 km2, grade Ill of 7 907 km2, and area of land not suitable for agriculture was 6 312 km2. According to the evaluation results, the key areas for land use adjustment were Zhenlai County, Da'an County, Tongyu County and western Changling County. The directions of land use adjustment included improving irrigation and drainage conditions, governing land salinization and conversion of cropland to forest and grassland. [Conclusion] This study provided basis for the effective application of agricultural resources and ecological environment construction in western Jilin Province.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
基金funded by King Fahd University of Petroleum&Minerals,Saudi Arabia under IRC-SES grant#INRE 2217.
文摘Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.
文摘This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.
基金the financial support of the European Union under the REFRESH-Research Excellence for Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition and has been done in connection with project Students Grant Competition SP2025/062"specific research on progressive and sustainable production technologies"and SP2025/063"specific research on innovative and progressive manufacturing technologies"financed by the Ministry of Education,Youth and Sports and Faculty of Mechanical Engineering VSB-TUOThe authors would like to extend their sincere appreciation to Researchers Supporting Project number(RSP2025R472)King Saud University,Riyadh,Saudi Arabia.
文摘In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the complexity of transportation costs and demand,this study presents a novel method that offers flexible routing alternatives to manage these complexities.When real-world variables such as fluctuating costs,variable capacity,and unpredictable demand are considered,traditional transshipment models often prove inadequate.To overcome these challenges,we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers.This framework allows for more adaptable and flexible decision-making in multi-objective transshipment situations by effectively capturing uncertain parameters.To overcome these challenges,we develop an innovative,fully fuzzy-based framework using LR flat fuzzy numbers to effectively capture uncertainty in key parameters,offering more flexible and adaptive decision-making in multi-objective transshipment problems.The proposed model also presents alternative route options,giving decisionmakers a range of choices to satisfy multiple requirements,including reducing costs,improving service quality,and expediting delivery.Through extensive numerical experiments,we demonstrate that the model can achieve greater adaptability,efficiency,and flexibility than standard approaches.This multi-path structure provides additional flexibility to adapt to dynamic network conditions.Using ranking strategies,we compared our multi-objective transshipment model with existing methods.The results indicate that,while traditional methods such as goal and fuzzy programming generate results close to the anti-ideal value,thus reducing their efficiency,our model produces solutions close to the ideal value,thereby facilitating better decision making.By combining dynamic routing alternatives with a fully fuzzybased approach,this study offers an effective tool to improve decision-making and optimize complex networks under real-world conditions in practical settings.In this paper,we utilize LINGO 18 software to solve the provided numerical example,demonstrating the effectiveness of the proposed method.
文摘In the evolving landscape of secure communication,steganography has become increasingly vital to secure the transmission of secret data through an insecure public network.Several steganographic algorithms have been proposed using digital images with a common objective of balancing a trade-off between the payload size and the quality of the stego image.In the existing steganographic works,a remarkable distortion of the stego image persists when the payload size is increased,making several existing works impractical to the current world of vast data.This paper introduces FuzzyStego,a novel approach designed to enhance the stego image’s quality by minimizing the effect of the payload size on the stego image’s quality.In line with the limitations of traditional methods like Pixel Value Differencing(PVD),Transform Domain Techniques,and Least Significant Bit(LSB)insertion,such as image quality degradation,vulnerability to processing attacks,and restricted capacity,FuzzyStego utilizes fuzzy logic to categorize pixels into intensity levels:Low(L),Medium-Low(ML),Medium(M),Medium-High(MH),and High(H).This classification enables adaptive data embedding,minimizing detectability by adjusting the hidden bit count according to the intensity levels.Experimental results show that FuzzyStego achieves an average Peak Signal-to-Noise Ratio(PSNR)of 58.638 decibels(dB)and a Structural Similarity Index Measure(SSIM)of almost 1.00,demonstrating its promising capability to preserve image quality while embedding data effectively.
基金the Anusandhan National Research Foundation(ANRF),New Delhi[Erstwhile,Science and Engineering Research Board(SERB)]Department of Science and Technology(DST)(Government of India)(File No.:CRG/2022/002618 Dated:22.08.2023)for providing the grant and support to carry out this work effectively.
文摘The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arjunanadi River basin,South India.Fluoride levels in the study area vary between 0.1 and 3.10 mg/L,with 32 samples exceeding the World Health Organization(WHO)standard of 1.5 mg/L.Hydrogeochemical analyses(Durov and Gibbs)clearly show that the overall water chemistry is primarily influenced by simple dissolution,mixing,and rock-water interactions,indicating that geogenic sources are the predominant contributors to fluoride in the study area.Around 446.5 km^(2)is considered at risk.In predictive analysis,five Machine Learning(ML)models were used,with the AdaBoost model performing better than the other models,achieving 96%accuracy and 4%error rate.The Traditional Health Risk Assessment(THRA)results indicate that 65%of samples pose highly susceptible for dental fluorosis,while 12%of samples pose highly susceptible for skeletal fluorosis in young age groups.The Fuzzy Inference System(FIS)model effectively manages ambiguity and linguistic factors,which are crucial when addressing health risks linked to groundwater fluoride contamination.In this model,input variables include fluoride concentration,individual age,and ingestion rate,while output variables consist of dental caries risk,dental fluorosis,and skeletal fluorosis.The overall results indicate that increased ingestion rates and prolonged exposure to contaminated water make adults and the elderly people vulnerable to dental and skeletal fluorosis,along with very young and young age groups.This study is an essential resource for local authorities,healthcare officials,and communities,aiding in the mitigation of health risks associated with groundwater contamination and enhancing quality of life through improved water management and health risk assessment,aligning with Sustainable Development Goals(SDGs)3 and 6,thereby contributing to a cleaner and healthier society.
基金supported by the National Laboratory of Space Intelligent Control(No.HTKJ2023KL502007)the Chinese Government Scholarship(CSC)。
文摘In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.
基金The National Natural Science Foundation of China(No.60373066,60425206,90412003),the National Basic Research Pro-gram of China (973Program)(No.2002CB312000),the Innovation Plan for Jiangsu High School Graduate Student, the High TechnologyResearch Project of Jiangsu Province (No.BG2005032), and the Weap-onry Equipment Foundation of PLA Equipment Ministry ( No.51406020105JB8103).
文摘To enable representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called the fuzzy description logics with comparison expressions (FCDLs) is presented. The syntax and semantics of FCDLs are formally defined, and the forms of axioms and assertions in FCDLs knowledge bases are specified. FCDLs combine both fuzzy concepts from the fuzzy description logics (FDLs) and cut concepts from the extended fuzzy description logics (EFDLs) in the same theory. Furthermore, cut concepts are extended into comparison cut concepts in FCDLs to represent comparison expressions between fuzzy membership degrees, which are often used in practice but not supported by the other fuzzy extensions of description logics. FCDLs have more expressive power than FDLs and EFDLs, and are able to represent expressive fuzzy knowledge and to perform reasoning tasks based on them. Therefore, FCDLs can enable representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.
基金Cultivation Fund for Innovation Project of Ministry of Education (No.708045)
文摘In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.
文摘This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model.
文摘Large-scale mobile social networks(MSNs)facilitate communications through mobile devices.The users of these networks can use mobile devices to access,share and distribute information.With the increasing number of users on social networks,the large volume of shared information and its propagation has created challenges for users.One of these challenges is whether users can trust one another.Trust can play an important role in users'decision making in social networks,so that,most people share their information based on their trust on others,or make decisions by relying on information provided by other users.However,considering the subjective and perceptive nature of the concept of trust,the mapping of trust in a computational model is one of the important issues in computing systeins of social networks.Moreover,in social networks,various communities may exist regarding the relationships between users.These connections and communities can affect trust among users and its complexity.In this paper,using user characteristics on social networks,a fuzzy clustering method is proposed and the trust between users in a cluster is computed using a computational model.Moreover,through the processes of combination,transition and aggregation of trust,the trust value is calculated between users who are not directly connected.Results show the high performance of the proposed trust inference method.
文摘The control of the clutch engagement for an automatic mechanical transmission in the process of a tracklayer getting to start is studied. The dynamic model of power transmission and automatic clutch system is developed. Using tools of Simulink, the transient characteristics during the vehicle starting, including the jerk and the clutch slip time, are provided here. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed to control the clutch engagement. Simulation results verify its value.
基金Program for New Century Excellent Talents in Uni-versity (NoNCET-05-0288)
文摘To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is presented. The definition of vague set is introduced and then the syntax and semantics of vague ALC are formally defined. The forms of axioms and assertions in the vague ALC knowledge bases are specified. Finally, the tableau algorithm is developed for the reasoning in the vague ALC. The vague ALC based on vague set uses two degrees of membership instead of a single membership degree in the fuzzy sets and is more accurate in representing the imprecision in the degrees of membership. The vague ALC has more expressive power than ALC and can represent fuzzy knowledge and perform reasoning tasks based on them. Therefore, the vague ALC can enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.
文摘Fuzziness is an internal property of spatial objects.How to model fuzziness of a spatial object is a main task of next generation GIS.This paper proposes basic fuzzy spatial object types based on fuzzy topology.These object types are the natural extension of current nonfuzzy spatial object types.A fuzzy cell complex structure is defined for modeling fuzzy regions,lines and points.Furthermore,fuzzy topological relations between these fuzzy spatial objects are formalized based on the 9intersection approach.This model can be implemented for GIS applications due to its scientific theory basis.
基金The National Natural Science Foundation of China(No60403016)the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘To solve the extended fuzzy description logic with qualifying number restriction (EFALCQ) reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction (ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ satdomain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is PSPACE-complete.
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
基金Supported by the National Natural Science Foundation of China(41072196)~~
文摘[Objective] This study was to evaluate the ecological suitability of agricultural land in western Jilin Province, with the aim to provide basis for the effective application of agricultural resources and the structural adjustment of land use. [Method] The evaluation index system was constructed based on fuzzy mathematic method according to the principles of systematic, dominant, effectiveness and feasibility; based on law of tolerance, reasonable evaluation criteria were determined according to the ecological amplitude of crops; based on GIS processing, the initial data completed the mathematical operation by using the VBA program in Excel. [Result] The area of agricultural land grade I was 5 512 km2, grade II of 25 985 km2, grade Ill of 7 907 km2, and area of land not suitable for agriculture was 6 312 km2. According to the evaluation results, the key areas for land use adjustment were Zhenlai County, Da'an County, Tongyu County and western Changling County. The directions of land use adjustment included improving irrigation and drainage conditions, governing land salinization and conversion of cropland to forest and grassland. [Conclusion] This study provided basis for the effective application of agricultural resources and ecological environment construction in western Jilin Province.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.