In this work, four samples containing different contents of fumed SiO_2 were prepared to improve the pore size distribution and various properties of b nucleated isotatic polypropylene(b-i PP) biaxial membrane used ...In this work, four samples containing different contents of fumed SiO_2 were prepared to improve the pore size distribution and various properties of b nucleated isotatic polypropylene(b-i PP) biaxial membrane used for lithium-ion battery separator. The wide-angle X-ray diffraction(WAXD) and differential scanning calorimetry(DSC) results show that the fumed SiO_2 promotes the formation of b-crystal slightly and narrows down the thickness distribution of b-lamellae; meanwhile, evenly distributed SiO_2 within b-i PP can be inspected by scanning electron microscopy(SEM). Moreover, further detailed characterization of morphological evolutions during biaxial stretching by tensile testing and SEM manifests that SiO_2 can strengthen b-i PP and make the samples deform more homogeneously, resulting in a gradually elaborate and finer oriented microfibril structure after longitudinal stretching, in which more uniform defects distribute between fibrils and restrain the formation of coarse fibrils effectively. Therefore, more superior microporous structure emerges with the addition of SiO_2, accompanied by narrower pore size distribution and better connectivity between microvoids, which is confirmed by mercury porosimeter and diminished Gurley value. Moreover, the lower thermal shrinkage, decreased shrinkage rate and suppressed porosity reduction indicate that fumed SiO_2 improves thermal and dimensional stability of membrane dramatically. Furthermore, due to the excellent wettability of SiO_2 with electrolyte, the microporous membranes doped with SiO_2 have higher electrolyte uptake, even after heat treatment at elevated temperature.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51421061)
文摘In this work, four samples containing different contents of fumed SiO_2 were prepared to improve the pore size distribution and various properties of b nucleated isotatic polypropylene(b-i PP) biaxial membrane used for lithium-ion battery separator. The wide-angle X-ray diffraction(WAXD) and differential scanning calorimetry(DSC) results show that the fumed SiO_2 promotes the formation of b-crystal slightly and narrows down the thickness distribution of b-lamellae; meanwhile, evenly distributed SiO_2 within b-i PP can be inspected by scanning electron microscopy(SEM). Moreover, further detailed characterization of morphological evolutions during biaxial stretching by tensile testing and SEM manifests that SiO_2 can strengthen b-i PP and make the samples deform more homogeneously, resulting in a gradually elaborate and finer oriented microfibril structure after longitudinal stretching, in which more uniform defects distribute between fibrils and restrain the formation of coarse fibrils effectively. Therefore, more superior microporous structure emerges with the addition of SiO_2, accompanied by narrower pore size distribution and better connectivity between microvoids, which is confirmed by mercury porosimeter and diminished Gurley value. Moreover, the lower thermal shrinkage, decreased shrinkage rate and suppressed porosity reduction indicate that fumed SiO_2 improves thermal and dimensional stability of membrane dramatically. Furthermore, due to the excellent wettability of SiO_2 with electrolyte, the microporous membranes doped with SiO_2 have higher electrolyte uptake, even after heat treatment at elevated temperature.