Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
To investigate the frost-heave properties of silty clay under the combination action of seasonal freezing and artificial freezing, and verify the feasibility of combined freezing, eight combined freezing experiments w...To investigate the frost-heave properties of silty clay under the combination action of seasonal freezing and artificial freezing, and verify the feasibility of combined freezing, eight combined freezing experiments were performed on silty clay with water content (mass fraction) of 23.5% and 28.0%, through developed frost-heave test apparatus, in closed or open system. Two sorts of freezing temperature models, namely, constant and sine models, were applied to artificial freezing. The experimental results indicate that the frost-heave degree in seasonal freezing stage accounts for over 90% of the total in open system and it is up to 95% in closed system; the change of artificial sine-freezing temperature has no influence on the frost-heave degree in closed system, however, slight influence in open system. It is found that the variation of temperature gradient of sine-freezing specimen lags behind that of sine-freezing temperature with half phase; sine-freezing temperature model can reduce frost-heave degree of soil. Brand new technology is proposed for the application of artificial ground freezing and new study field of artificial freezing is created.展开更多
Cold air is one key factor affecting the freezing process of ice tanks.The volume of fluid method is employed to simulate the freezing process of water in an ice tank with cold air inlets.The temperature field distrib...Cold air is one key factor affecting the freezing process of ice tanks.The volume of fluid method is employed to simulate the freezing process of water in an ice tank with cold air inlets.The temperature field distribution in the ice tank is calculated.The temperature field at different typical instants are compared.The main characteristics of the freezing process in an ice tank driven by cold air are analyzed.The influence of the number of cold air inlets on the freezing process is investigated.The numerical results show that with increasing the number of cold air inlets,the temperature field becomes more uniform.The inlet velocity of cold air has a great influence on the generation of ice.This work can serve for the design of the ice tank and control of the freezing process.展开更多
Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced f...Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.展开更多
Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in s...Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.展开更多
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil...Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.展开更多
Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distri...Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.展开更多
Potato(Solanum tuberosum)is a globally important staple crop.However,cultivated potato varieties are highly sensitive to low temperatures.The molecular mechanisms underlying freezing resistance in potatoes remain poor...Potato(Solanum tuberosum)is a globally important staple crop.However,cultivated potato varieties are highly sensitive to low temperatures.The molecular mechanisms underlying freezing resistance in potatoes remain poorly understood.Through comparative metabolome and transcriptome analyses of freezing-tolerant(CM,Solanum commersonii)and freezing-sensitive(DM,DM1-3516R44)varieties,we identified a coldinduced UDP-glycosyltransferase gene,ScUGT73B4,which is associated with the accumulation of glycosylated flavonoids in wild CM varieties.Overexpression of ScUGT73B4 led to increased accumulation of glycosylated flavonoids and enhanced antioxidant capacity,resulting in improved freezing tolerance in potato plantlets.These findings reveal a UDP-glycosyltransferase in the flavonoid pathway and offer a potential valuable genetic resource for breeding potatoes with improved freezing tolerance.展开更多
5-Aminolevulinic acid(ALA)is a natural plant growth regulator that promotes plant freezing tolerance.The WRKY family consists of plantspecific transcription factors(TFs)associated with abiotic stress responses.Up to n...5-Aminolevulinic acid(ALA)is a natural plant growth regulator that promotes plant freezing tolerance.The WRKY family consists of plantspecific transcription factors(TFs)associated with abiotic stress responses.Up to now,whether WRKYs are involved in ALA-induced plant freezing tolerance and the underlying mechanism is not clear.In this study,we found that pretreatment with 50 mg·L^(-1) ALA one week earlier significantly increased the freezing tolerance of nectarine(Prunus persica var.nectarina)pistils with higher antioxidant enzyme activity and osmotic solutes when the floral twigs were stressed by-3℃ for 6 h.ALA also enhanced the expression of PpWRKY18,PpCBF1,PpCOR1,and several genes encoding antioxidant enzymes(such as superoxide dismutase,peroxidase,and catalase)and pyrroline-5-carboxylate synthase(P5CS).When PpWRKY18 was overexpressed in tobacco,the transgenic plants exhibited greater freezing tolerance,which was further promoted by exogenous ALA.Y2H,Pull-down,BiFC,and LCI analyses revealed that PpWRKY18 interacts with PpCBF1,promoting the latter transcriptional activity.Additionally,Y1H experiments showed that PpWRKY18 directly binds to the promoter of PpPOD41 while PpCBF1 binds to the promoters of PpP5CS1 and PpCOR1,activating the target gene expressions.Furthermore,we established a yeast library using the promoter of PpWRKY18 as the bait to screen the upstream regulatory factors.By library screening,Y1H,DLR,and EMSA,we found that PpC3H37,a zinc finger protein,was responsive to chilling and ALA treatment,and as a transcription factor,it activated PpWRKY18 expression by directly binding to the promoter.Taken together,we reveal a regulatory network where ALA induces upregulation of PpC3H37 expression,which positively regulates PpWRKY18 expression.Subsequently,the regulatory pathway diverges into two branches.The first is CBF-dependent,where PpCBF1 interacts with PpWRKY18,binding the promoters of PpP5CS1 and PpCOR1.The second is CBF-independent,where PpWRKY18 directly binds the promoter of PpPOD41 to upregulate the gene expression and increase the antioxidant enzyme activity and freezing tolerance.These findings provide a novel insight of the mechanism of ALA in regulating the cold hardiness of nectarine pistil.展开更多
Frost heave in water-bearing rock masses poses significant threats to geotechnical engineering.This paper developed a novel three-dimensional(3D)frost model,based on the combined finite-discrete element method(FDEM),t...Frost heave in water-bearing rock masses poses significant threats to geotechnical engineering.This paper developed a novel three-dimensional(3D)frost model,based on the combined finite-discrete element method(FDEM),to investigate the frost heave process in rock masses where thermal transfer,water migration,water-ice phase transition(ice growth)and ice-rock interaction are explicitly simulated.The proposed model is first validated against existing experimental and analytical solutions,and further applied to investigate path-dependent frost heave behavior under various freezing conditions.Results show that freezing direction plays a vital role in the dynamic ice growth and ice-rock interaction,thus affecting the frost heave behavior.In the top-down freezing regime,ice plugs form first at the crack's top surface,sealing the crack and preventing water migration,which can amplify ice pressure.Parametric studies,including rock Young's modulus,ice-rock friction,and rock hydraulic conductivity,further reveal that the temporal aspects of ice development and rock mechanical response strongly affect ice-rock interaction and hence the frost heave mechanism.Furthermore,some typical phenomena(e.g.water/ice extrusion and frost cracking)can also be well captured in this model.This novel numerical framework sheds new light on frost heave behavior and enriches our understanding of frost heave mechanisms and ice-rock interaction processes within cold environment engineering projects.展开更多
Snow and freezing disasters are recurrent weather and climate phenomena that affect the world annually.These events exert a significant influence on numerous aspects of life,including transportation,power supply,and d...Snow and freezing disasters are recurrent weather and climate phenomena that affect the world annually.These events exert a significant influence on numerous aspects of life,including transportation,power supply,and daily activities,and result in considerable economic losses.This study aims to provide a comprehensive analysis of the regions affected by these disasters,the preventive and responsive measures employed,recent advancements in key materials,and the challenges encountered.By doing so,we can gain a deeper understanding of the vital role,significant advantages,and untapped potential of key materials for effectively preventing and responding to snow and freezing disasters.Furthermore,promoting research and utilization of these materials not only contributes to the development of the safety and emergency equipment industry but also strengthens the supply of advanced and suitable safety and emergency equipment.展开更多
The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varyin...The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varying dynamics,making the exact solutions challenging to obtain.As a result,numerical integration methods are typically employed.However,conventional methods often suffer from low computational efficiency.To address this,this paper explores the application of the parameter freezing precise exponential integrator to vehicle-road coupling models.The model accounts for road roughness irregularities,incorporating all terms unrelated to the linear part into the algorithm's inhomogeneous vector.The general construction process of the algorithm is detailed.The validity of numerical results is verified through approximate analytical solutions(AASs),and the advantages of this method over traditional numerical integration methods are demonstrated.Multiple parameter freezing precise exponential integrator schemes are constructed based on the Runge-Kutta framework,with the fourth-order four-stage scheme identified as the optimal one.The study indicates that this method can quickly and accurately capture the dynamic system's vibration response,offering a new,efficient approach for numerical studies of high-dimensional vehicle-road coupling systems.展开更多
The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remain...The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remains an open issue,and the influence of microstructure is not yet fully understood.To address these challenges,we propose a THM model for FT in PMs that considers microstructure and variable air content.In this work,a non-equilibrium thermodynamic approach is proposed to capture ice formation/melting,the microstructure is accounted for utilizing micromechanics,and the FT processes in air-entrained PMs are formulated within the proposed THM model.This model incorporates variable air void characteristics,e.g.air content,spacing factor,specific surface area,and supercooled water-filled regimes,and distinguishes the roles of air voids between freezing and thawing.The FT behaviors,including deformation,ice formation/melting,spacing factor,and pore water pressure evolutions,are focused.Comparisons with experimental results,confirm the capability of the present model.The results demonstrate the effects of variable air voids on the FT behavior of air-entrained PMs.The findings reveal that assuming fixed air void characteristics can lead to underestimation of pore pressure and deformation,particularly at low air content.Additionally,air voids act as cryo-pumps during freezing and when the cooling temperature stabilizes.During thawing,air voids supply gas to the melting sites(i.e.“gas escape”),preventing further significant deformation reduction.These results can provide novel insights for understanding the frost damage of PMs.展开更多
Freezing–thawing indices serve as a comprehensive indicator of both the duration of the freezing/thawing periods and the degree of cold and heat in a given region.In-depth analysis of the freezing-thawing indices not...Freezing–thawing indices serve as a comprehensive indicator of both the duration of the freezing/thawing periods and the degree of cold and heat in a given region.In-depth analysis of the freezing-thawing indices not only enables the prediction of permafrost distribution and its dynamic changes,but also facilitates the assessment of damage risk to infrastructure under freeze-thaw action.In this paper,the air/ground freezing–thawing indices from 1987 to 2017,based on daily temperature observations from meteorological stations along the China–Nepal Highway(CNH),were calculated,and their spatial and temporal variation patterns were analyzed.The results showed that:(1)Both mean annual air temperature and mean annual ground surface temperature along the CNH fluctuated upward,with climate tendency rates of 0.43 and 0.52.C·(10a)~(-1),respectively;(2)The number of days with negative air temperature and ground temperature showed fluctuated downward,with change rates of-8.6 and-8.3 d·(10a)~(-1),respectively;(3)The ranges of air freezing index,air thawing index,ground freezing index,and ground thawing index over the years were 157.05-458.88°C·d,2034.20-2560.73°C·d,108.78-396.83°C·d,and 3515.25-4288.67°C·d,respectively.The climate tendency rates were-5.42,10.22,-6.79,and 12.14.C·d·a-1,respectively,showing a general warming trend;(4)The air freezing index,ground freezing index,and ground thawing index changed abruptly in 1999,2000,and 2002,respectively,evincing significant changes after 2002.The research results can provide a basis for the risk assessment of freezing–thawing erosion and the prevention and control of permafrost engineering diseases along the CNH.展开更多
Common problems in engineering projects that involve artificial ground freezing of soil or rock include inadequate thickness,strength and continuity of artificial frozen walls.It is difficult to evaluate the freezing ...Common problems in engineering projects that involve artificial ground freezing of soil or rock include inadequate thickness,strength and continuity of artificial frozen walls.It is difficult to evaluate the freezing state using only a few thermometer holes at fixed positions or with other existing approaches.Here we report a novel experimental design that investigates changes in ultrasonic properties(received waveform,wave velocity V_(p),wave amplitude,frequency spectrum,centroid frequency f_(c),kurtosis of the frequency spectrum KFS,and quality factor Q)measured during upward freezing,compared with those during uniform freezing,in order to determine the freezing state in 150 mm cubic blocks of Ardingly sandstone.Water content,porosity and density were estimated during upward freezing to ascertain water migration and changes of porosity and density at different stages.The period of receiving the wave increased substantially and coda waves changed from loose to compact during both upward and uniform freezing.The trend of increasing V_(p) can be divided into three stages during uniform freezing.During upward freezing,V_(p) increased more or less uniformly.The frequency spectrum could be used as a convenient and rapid method to identify different freezing states of sandstone(unfrozen,upward frozen,and uniformly frozen).The continuous changes in reflection coefficient r_(φ),refraction coefficient t_(φ) and acoustic impedance field are the major reason for larger reflection and refraction during upward freezing compared with uniform freezing.Wave velocity V_(p),wave amplitude A_(h),centroid frequency f_(c) and quality factor Q were adopted as ultrasonic parameters to evaluate quantitatively the temperature T of uniformly frozen sandstone,and their application within a radar chart is recommended.Determination of V_(p) provides a convenient method to evaluate the freezing state and calculate the cryofront height and frozen section thickness of upward frozen sandstone,with accuracies of 73.37%-99.23%.展开更多
Populus tomentosa cuttings were treated with 1mmol·L -1 , 5mmol·L -1 , 10mmol·L -1 or 15mmol·L -1 of CaCl 2 for 1\|7 d, respectively, for studying the effects of different conc...Populus tomentosa cuttings were treated with 1mmol·L -1 , 5mmol·L -1 , 10mmol·L -1 or 15mmol·L -1 of CaCl 2 for 1\|7 d, respectively, for studying the effects of different concentrations of CaCl 2 on freezing resistance. Results indicated that 10?mmol·L -1 of CaCl 2 has greater effect than other concentrations on the enhancement of freezing resistance, and the optimum time of pretreatment was 5?d. In addition, cuttings used for cold acclimation at -3℃ were pretreated with or without 10?mmol·L -1 of CaCl 2, 3?mmol·L -1 of Ca 2+ chelator EGTA, 0 05?mmol·L -1 of CaM antagonist CPZ or 0 1?mmol·L -1 of Ca 2+ channel inhibitor LaCl 3 The changes in CaM and freezing resistance of all cuttings were investigated. The results showed that cold acclimation at -3℃ increased CaM content and decreased the minimum temperature for 100% survival. The CaCl 2 pretreatment enhanced the effect of cold acclimation and obviously increased CaM content and decreased the minimum temperature for 100% survival, but this effect was strongly inhibited by the EGTA, CPZ or LaCl 3 It is concluded that the effect of CaCl 2 on freezing resistance is associated with its concentration and time of pretreatment, Ca 2+ CaM may be involved in the induction of freezing resistance of the cuttings.展开更多
Populus tomentosa seedlings used for cold acclimation at -3℃ were pretreated with or without 10?mmol·L -1 CaCl 2, 3?mmol·L -1 of Ca 2+ chelator EGTA, 0 1?mmol·L -1 of Ca 2+ ...Populus tomentosa seedlings used for cold acclimation at -3℃ were pretreated with or without 10?mmol·L -1 CaCl 2, 3?mmol·L -1 of Ca 2+ chelator EGTA, 0 1?mmol·L -1 of Ca 2+ channel inhibitor LaCl 3,and 0 05?mmol·L -1 of CaM antagonist CPZ. The changes in the contents of total soluble protein and CaM, and freezing resistance in all pretreated seedlings in various periods ( viz: following cold acclimation, chilling stress and recovery) were investigated. Results showed that cold acclimation increased the contents of total soluble protein and CaM, and freezing resistance of seedlings, which could be strongly reduced by the pretreatments of EGTA CPZ and LaCl 3 Cold acclimation combined with CaCl 2 pretreatment enhanced the effect of cold acclimation on freezing resistance, and obviously increased the contents of total soluble protein and CaM, reduced the declining degree of the contents of total soluble protein and CaM caused by chilling stress as compared with cold acclimation, augmented the increase in the level of total soluble protein and CaM during the recovery periods. Further analysis found that an increase in total soluble protein content during cold acclimation with or without CaCl 2 pretreatment mainly resulted from the increase in content of heat stable protein in total soluble protein. It is suggested that Ca 2+ calmodulin may be involved in the synthesis of total soluble protein, and the induction of freezing resistance of seedlings.展开更多
The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conv...The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conventional preparation methods. During the processes of chemical fixation, dehydration and embedding, the cell structures might be more artificially modified than that obtained from high pressure freezing and freeze substitution. With the present method, the sheath of N. flagelliforme could be well penetrated and no extra big space could exist between the cell and the sheath. The cell protoplasm rarely shrinked. Some fine structures of cell inclusions and unit membranes became visualized. Many bacteria were harbored in the sheath. In addition, the presence of big vacuoles in the cell of N. flagelliforme as well as the presence of bacteria in the sheath shown in the present preparation for cyanobacteria has not been described so far in the literature.展开更多
The changes in the contents of total soluble protein and RNA, the activity of RNase in leaves and branches of Populus tomentosa cuttings at various periods (viz: cold acclimation, deacclimation, chilling stress an...The changes in the contents of total soluble protein and RNA, the activity of RNase in leaves and branches of Populus tomentosa cuttings at various periods (viz: cold acclimation, deacclimation, chilling stress and the recovery after chilling stress), and the survival rate and the freezing resistance of cuttings during cold acclimation at -3℃ were investigated. Results showed that cold acclimation not only increased the contents of total soluble protein and RNA, the survival rates and the freezing resistance of cuttings, decreased the activity of RNase, but also reduced the declining degree of total soluble protein and RNA contents, and the increasing level of RNase caused by chilling stress as compared with the controls. In addition, cold acclimation augmented the increase in the level of total soluble protein and RNA, and facilitated the decrease of RNase during the recovery periods. Further analysis found that the DNA content of all treatments kept relative stability at various periods. The changes in total soluble protein, RNA and RNase were closely related to the freezing resistance of cuttings. It appears that the increase of RNA content caused by cold acclimation induced decrease of RNase activity may be involved in the accumulation of total soluble protein and the induction of freezing resistance of cuttings.展开更多
Objective:The goal of this research was to evaluate the clinical characteristics of patients with primary progressive freezing of gait(PPFOG).Patients and methods:This retrospective study enrolled 8 PPFOG patients and...Objective:The goal of this research was to evaluate the clinical characteristics of patients with primary progressive freezing of gait(PPFOG).Patients and methods:This retrospective study enrolled 8 PPFOG patients and 10 age-matched Parkinson's disease with freezing of gait(PDFOG)patients.All patients underwent structured forms to document clinical manifestations and neuropsychological evaluations.Result:PPFOG patients demonstrated later onset age than PDFOG patients(70.00±9.97 years versus 53.30±5.40 years,respectively;P<0.05).Besides FOG(100%),the most prevalent concomitant symptoms of PPFOG patients were falling(n=6,75%),and fatigue(n=5,62.5%).More PPFOG patients had cerebrovascular risk factors and mild brain magnetic resonance imaging(MRI)abnormalities,which were constant with the manifestations of“cerebral small vessel disease”(P=0.0001).Conclusion:According to this study,the majority of PPFOG patients were linked with cerebrovascular disease risk factors and mild brain MRI abnormalities.More research on larger populations is needed to better understand the potential mechanisms underlying the link between PPFOG and cerebral small vessel disease.展开更多
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金Project(40571032) supported by the National Natural Science Foundation of ChinaProject(2006G011-B-3) supported by Science Studies and Development Plan Foundation of Railway Ministry
文摘To investigate the frost-heave properties of silty clay under the combination action of seasonal freezing and artificial freezing, and verify the feasibility of combined freezing, eight combined freezing experiments were performed on silty clay with water content (mass fraction) of 23.5% and 28.0%, through developed frost-heave test apparatus, in closed or open system. Two sorts of freezing temperature models, namely, constant and sine models, were applied to artificial freezing. The experimental results indicate that the frost-heave degree in seasonal freezing stage accounts for over 90% of the total in open system and it is up to 95% in closed system; the change of artificial sine-freezing temperature has no influence on the frost-heave degree in closed system, however, slight influence in open system. It is found that the variation of temperature gradient of sine-freezing specimen lags behind that of sine-freezing temperature with half phase; sine-freezing temperature model can reduce frost-heave degree of soil. Brand new technology is proposed for the application of artificial ground freezing and new study field of artificial freezing is created.
基金the Key Technologies Research and Development Program(No.2022YFE0107000)the National Natural Science Foundation of China(No.52171259)。
文摘Cold air is one key factor affecting the freezing process of ice tanks.The volume of fluid method is employed to simulate the freezing process of water in an ice tank with cold air inlets.The temperature field distribution in the ice tank is calculated.The temperature field at different typical instants are compared.The main characteristics of the freezing process in an ice tank driven by cold air are analyzed.The influence of the number of cold air inlets on the freezing process is investigated.The numerical results show that with increasing the number of cold air inlets,the temperature field becomes more uniform.The inlet velocity of cold air has a great influence on the generation of ice.This work can serve for the design of the ice tank and control of the freezing process.
基金supported by the Open Fund of State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE201806)the National Natural Science Foundation of China (Grant No.42177155).
文摘Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.
基金supported by a research grant from the National University of Singapore to WQS(RP-3960366)a collaborative research grant from Sichuan Zhongke Organ Co.Ltd(Chengdu,China).
文摘Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.
基金funded by the National Natural Science Foundation of China(grant no.32270238 and 31870311).
文摘Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.
基金funded by the National Natural Science Foundation of China(Grant No.42325503)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant Nos.2023AFD096 and 2022CFD122)+1 种基金the Natural Science Foundation of Wuhan(Grant No.2024020901030454)the Beijige Foundation of NJIAS(Grant No.BJG202304)。
文摘Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2002204 and 32272725)the China National Key Research and Development Program(Grant No.2022YFF1002500)+2 种基金the China Postdoctoral Science Foundation(Grant No.2024M753583)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030004)Natural Science Foundation of Henan(Grant No.222300420109)。
文摘Potato(Solanum tuberosum)is a globally important staple crop.However,cultivated potato varieties are highly sensitive to low temperatures.The molecular mechanisms underlying freezing resistance in potatoes remain poorly understood.Through comparative metabolome and transcriptome analyses of freezing-tolerant(CM,Solanum commersonii)and freezing-sensitive(DM,DM1-3516R44)varieties,we identified a coldinduced UDP-glycosyltransferase gene,ScUGT73B4,which is associated with the accumulation of glycosylated flavonoids in wild CM varieties.Overexpression of ScUGT73B4 led to increased accumulation of glycosylated flavonoids and enhanced antioxidant capacity,resulting in improved freezing tolerance in potato plantlets.These findings reveal a UDP-glycosyltransferase in the flavonoid pathway and offer a potential valuable genetic resource for breeding potatoes with improved freezing tolerance.
基金supported by the Natural Science Foundation of China(Grant Nos.32230097 and 32172512)the Jiangsu Special Fund for Frontier Foundation Research of Carbon Peaking and Carbon Neutralization(Grant No.BK20220005)+1 种基金the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2023]a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘5-Aminolevulinic acid(ALA)is a natural plant growth regulator that promotes plant freezing tolerance.The WRKY family consists of plantspecific transcription factors(TFs)associated with abiotic stress responses.Up to now,whether WRKYs are involved in ALA-induced plant freezing tolerance and the underlying mechanism is not clear.In this study,we found that pretreatment with 50 mg·L^(-1) ALA one week earlier significantly increased the freezing tolerance of nectarine(Prunus persica var.nectarina)pistils with higher antioxidant enzyme activity and osmotic solutes when the floral twigs were stressed by-3℃ for 6 h.ALA also enhanced the expression of PpWRKY18,PpCBF1,PpCOR1,and several genes encoding antioxidant enzymes(such as superoxide dismutase,peroxidase,and catalase)and pyrroline-5-carboxylate synthase(P5CS).When PpWRKY18 was overexpressed in tobacco,the transgenic plants exhibited greater freezing tolerance,which was further promoted by exogenous ALA.Y2H,Pull-down,BiFC,and LCI analyses revealed that PpWRKY18 interacts with PpCBF1,promoting the latter transcriptional activity.Additionally,Y1H experiments showed that PpWRKY18 directly binds to the promoter of PpPOD41 while PpCBF1 binds to the promoters of PpP5CS1 and PpCOR1,activating the target gene expressions.Furthermore,we established a yeast library using the promoter of PpWRKY18 as the bait to screen the upstream regulatory factors.By library screening,Y1H,DLR,and EMSA,we found that PpC3H37,a zinc finger protein,was responsive to chilling and ALA treatment,and as a transcription factor,it activated PpWRKY18 expression by directly binding to the promoter.Taken together,we reveal a regulatory network where ALA induces upregulation of PpC3H37 expression,which positively regulates PpWRKY18 expression.Subsequently,the regulatory pathway diverges into two branches.The first is CBF-dependent,where PpCBF1 interacts with PpWRKY18,binding the promoters of PpP5CS1 and PpCOR1.The second is CBF-independent,where PpWRKY18 directly binds the promoter of PpPOD41 to upregulate the gene expression and increase the antioxidant enzyme activity and freezing tolerance.These findings provide a novel insight of the mechanism of ALA in regulating the cold hardiness of nectarine pistil.
基金supported by the Natural Sciences and Engineering Research Council of Canada(Grant Nos.Discovery 341275,and CRDPJ 543894-19)NSERC/Energi Simulation Industrial Research Chair programState Key Laboratory of Geohazard Prevention and Geoenvironment Protection Open Fund(Grant No.SKLGP2024K001).
文摘Frost heave in water-bearing rock masses poses significant threats to geotechnical engineering.This paper developed a novel three-dimensional(3D)frost model,based on the combined finite-discrete element method(FDEM),to investigate the frost heave process in rock masses where thermal transfer,water migration,water-ice phase transition(ice growth)and ice-rock interaction are explicitly simulated.The proposed model is first validated against existing experimental and analytical solutions,and further applied to investigate path-dependent frost heave behavior under various freezing conditions.Results show that freezing direction plays a vital role in the dynamic ice growth and ice-rock interaction,thus affecting the frost heave behavior.In the top-down freezing regime,ice plugs form first at the crack's top surface,sealing the crack and preventing water migration,which can amplify ice pressure.Parametric studies,including rock Young's modulus,ice-rock friction,and rock hydraulic conductivity,further reveal that the temporal aspects of ice development and rock mechanical response strongly affect ice-rock interaction and hence the frost heave mechanism.Furthermore,some typical phenomena(e.g.water/ice extrusion and frost cracking)can also be well captured in this model.This novel numerical framework sheds new light on frost heave behavior and enriches our understanding of frost heave mechanisms and ice-rock interaction processes within cold environment engineering projects.
基金supported by the National Natural Science Foundation of China(Nos.52273220 and 22205243)。
文摘Snow and freezing disasters are recurrent weather and climate phenomena that affect the world annually.These events exert a significant influence on numerous aspects of life,including transportation,power supply,and daily activities,and result in considerable economic losses.This study aims to provide a comprehensive analysis of the regions affected by these disasters,the preventive and responsive measures employed,recent advancements in key materials,and the challenges encountered.By doing so,we can gain a deeper understanding of the vital role,significant advantages,and untapped potential of key materials for effectively preventing and responding to snow and freezing disasters.Furthermore,promoting research and utilization of these materials not only contributes to the development of the safety and emergency equipment industry but also strengthens the supply of advanced and suitable safety and emergency equipment.
基金Supported by the National Natural Science Foundation of China(No.U22A20246)the Key Project of Natural Science Foundation of Hebei Province of China(Basic Research Base Project)(No.A2023210064)the Science and Technology Program of Hebei Province of China(Nos.246Z1904G and 225676162GH)。
文摘The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varying dynamics,making the exact solutions challenging to obtain.As a result,numerical integration methods are typically employed.However,conventional methods often suffer from low computational efficiency.To address this,this paper explores the application of the parameter freezing precise exponential integrator to vehicle-road coupling models.The model accounts for road roughness irregularities,incorporating all terms unrelated to the linear part into the algorithm's inhomogeneous vector.The general construction process of the algorithm is detailed.The validity of numerical results is verified through approximate analytical solutions(AASs),and the advantages of this method over traditional numerical integration methods are demonstrated.Multiple parameter freezing precise exponential integrator schemes are constructed based on the Runge-Kutta framework,with the fourth-order four-stage scheme identified as the optimal one.The study indicates that this method can quickly and accurately capture the dynamic system's vibration response,offering a new,efficient approach for numerical studies of high-dimensional vehicle-road coupling systems.
基金the funding support from the National Natural Science Foundation of China(Grant Nos.52350004 and 51925903).
文摘The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remains an open issue,and the influence of microstructure is not yet fully understood.To address these challenges,we propose a THM model for FT in PMs that considers microstructure and variable air content.In this work,a non-equilibrium thermodynamic approach is proposed to capture ice formation/melting,the microstructure is accounted for utilizing micromechanics,and the FT processes in air-entrained PMs are formulated within the proposed THM model.This model incorporates variable air void characteristics,e.g.air content,spacing factor,specific surface area,and supercooled water-filled regimes,and distinguishes the roles of air voids between freezing and thawing.The FT behaviors,including deformation,ice formation/melting,spacing factor,and pore water pressure evolutions,are focused.Comparisons with experimental results,confirm the capability of the present model.The results demonstrate the effects of variable air voids on the FT behavior of air-entrained PMs.The findings reveal that assuming fixed air void characteristics can lead to underestimation of pore pressure and deformation,particularly at low air content.Additionally,air voids act as cryo-pumps during freezing and when the cooling temperature stabilizes.During thawing,air voids supply gas to the melting sites(i.e.“gas escape”),preventing further significant deformation reduction.These results can provide novel insights for understanding the frost damage of PMs.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2021QZKK0202)Shaanxi Provincial Youth Science and Technology Rising Star Project(No.2022KJXX-85)+3 种基金Key Scientific Research Project of Shaanxi Provincial Department of Education(No.22JS041)Youth Innovation Team Research Project of Shaanxi Provincial Department of Education(Nos.22JP099,21JP137)The Youth Innovation Team of Shaanxi Universitiesthe Support Program for Outstanding Young Talents of Shaanxi Universities(Dr.Tao Luo)。
文摘Freezing–thawing indices serve as a comprehensive indicator of both the duration of the freezing/thawing periods and the degree of cold and heat in a given region.In-depth analysis of the freezing-thawing indices not only enables the prediction of permafrost distribution and its dynamic changes,but also facilitates the assessment of damage risk to infrastructure under freeze-thaw action.In this paper,the air/ground freezing–thawing indices from 1987 to 2017,based on daily temperature observations from meteorological stations along the China–Nepal Highway(CNH),were calculated,and their spatial and temporal variation patterns were analyzed.The results showed that:(1)Both mean annual air temperature and mean annual ground surface temperature along the CNH fluctuated upward,with climate tendency rates of 0.43 and 0.52.C·(10a)~(-1),respectively;(2)The number of days with negative air temperature and ground temperature showed fluctuated downward,with change rates of-8.6 and-8.3 d·(10a)~(-1),respectively;(3)The ranges of air freezing index,air thawing index,ground freezing index,and ground thawing index over the years were 157.05-458.88°C·d,2034.20-2560.73°C·d,108.78-396.83°C·d,and 3515.25-4288.67°C·d,respectively.The climate tendency rates were-5.42,10.22,-6.79,and 12.14.C·d·a-1,respectively,showing a general warming trend;(4)The air freezing index,ground freezing index,and ground thawing index changed abruptly in 1999,2000,and 2002,respectively,evincing significant changes after 2002.The research results can provide a basis for the risk assessment of freezing–thawing erosion and the prevention and control of permafrost engineering diseases along the CNH.
基金supported by the National Natural Science Foundation of China(Grant Nos.51804157,51774183,and 11702094)the University of Sussex,UK.Both are gratefully acknowledged.
文摘Common problems in engineering projects that involve artificial ground freezing of soil or rock include inadequate thickness,strength and continuity of artificial frozen walls.It is difficult to evaluate the freezing state using only a few thermometer holes at fixed positions or with other existing approaches.Here we report a novel experimental design that investigates changes in ultrasonic properties(received waveform,wave velocity V_(p),wave amplitude,frequency spectrum,centroid frequency f_(c),kurtosis of the frequency spectrum KFS,and quality factor Q)measured during upward freezing,compared with those during uniform freezing,in order to determine the freezing state in 150 mm cubic blocks of Ardingly sandstone.Water content,porosity and density were estimated during upward freezing to ascertain water migration and changes of porosity and density at different stages.The period of receiving the wave increased substantially and coda waves changed from loose to compact during both upward and uniform freezing.The trend of increasing V_(p) can be divided into three stages during uniform freezing.During upward freezing,V_(p) increased more or less uniformly.The frequency spectrum could be used as a convenient and rapid method to identify different freezing states of sandstone(unfrozen,upward frozen,and uniformly frozen).The continuous changes in reflection coefficient r_(φ),refraction coefficient t_(φ) and acoustic impedance field are the major reason for larger reflection and refraction during upward freezing compared with uniform freezing.Wave velocity V_(p),wave amplitude A_(h),centroid frequency f_(c) and quality factor Q were adopted as ultrasonic parameters to evaluate quantitatively the temperature T of uniformly frozen sandstone,and their application within a radar chart is recommended.Determination of V_(p) provides a convenient method to evaluate the freezing state and calculate the cryofront height and frozen section thickness of upward frozen sandstone,with accuracies of 73.37%-99.23%.
文摘Populus tomentosa cuttings were treated with 1mmol·L -1 , 5mmol·L -1 , 10mmol·L -1 or 15mmol·L -1 of CaCl 2 for 1\|7 d, respectively, for studying the effects of different concentrations of CaCl 2 on freezing resistance. Results indicated that 10?mmol·L -1 of CaCl 2 has greater effect than other concentrations on the enhancement of freezing resistance, and the optimum time of pretreatment was 5?d. In addition, cuttings used for cold acclimation at -3℃ were pretreated with or without 10?mmol·L -1 of CaCl 2, 3?mmol·L -1 of Ca 2+ chelator EGTA, 0 05?mmol·L -1 of CaM antagonist CPZ or 0 1?mmol·L -1 of Ca 2+ channel inhibitor LaCl 3 The changes in CaM and freezing resistance of all cuttings were investigated. The results showed that cold acclimation at -3℃ increased CaM content and decreased the minimum temperature for 100% survival. The CaCl 2 pretreatment enhanced the effect of cold acclimation and obviously increased CaM content and decreased the minimum temperature for 100% survival, but this effect was strongly inhibited by the EGTA, CPZ or LaCl 3 It is concluded that the effect of CaCl 2 on freezing resistance is associated with its concentration and time of pretreatment, Ca 2+ CaM may be involved in the induction of freezing resistance of the cuttings.
文摘Populus tomentosa seedlings used for cold acclimation at -3℃ were pretreated with or without 10?mmol·L -1 CaCl 2, 3?mmol·L -1 of Ca 2+ chelator EGTA, 0 1?mmol·L -1 of Ca 2+ channel inhibitor LaCl 3,and 0 05?mmol·L -1 of CaM antagonist CPZ. The changes in the contents of total soluble protein and CaM, and freezing resistance in all pretreated seedlings in various periods ( viz: following cold acclimation, chilling stress and recovery) were investigated. Results showed that cold acclimation increased the contents of total soluble protein and CaM, and freezing resistance of seedlings, which could be strongly reduced by the pretreatments of EGTA CPZ and LaCl 3 Cold acclimation combined with CaCl 2 pretreatment enhanced the effect of cold acclimation on freezing resistance, and obviously increased the contents of total soluble protein and CaM, reduced the declining degree of the contents of total soluble protein and CaM caused by chilling stress as compared with cold acclimation, augmented the increase in the level of total soluble protein and CaM during the recovery periods. Further analysis found that an increase in total soluble protein content during cold acclimation with or without CaCl 2 pretreatment mainly resulted from the increase in content of heat stable protein in total soluble protein. It is suggested that Ca 2+ calmodulin may be involved in the synthesis of total soluble protein, and the induction of freezing resistance of seedlings.
文摘The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conventional preparation methods. During the processes of chemical fixation, dehydration and embedding, the cell structures might be more artificially modified than that obtained from high pressure freezing and freeze substitution. With the present method, the sheath of N. flagelliforme could be well penetrated and no extra big space could exist between the cell and the sheath. The cell protoplasm rarely shrinked. Some fine structures of cell inclusions and unit membranes became visualized. Many bacteria were harbored in the sheath. In addition, the presence of big vacuoles in the cell of N. flagelliforme as well as the presence of bacteria in the sheath shown in the present preparation for cyanobacteria has not been described so far in the literature.
文摘The changes in the contents of total soluble protein and RNA, the activity of RNase in leaves and branches of Populus tomentosa cuttings at various periods (viz: cold acclimation, deacclimation, chilling stress and the recovery after chilling stress), and the survival rate and the freezing resistance of cuttings during cold acclimation at -3℃ were investigated. Results showed that cold acclimation not only increased the contents of total soluble protein and RNA, the survival rates and the freezing resistance of cuttings, decreased the activity of RNase, but also reduced the declining degree of total soluble protein and RNA contents, and the increasing level of RNase caused by chilling stress as compared with the controls. In addition, cold acclimation augmented the increase in the level of total soluble protein and RNA, and facilitated the decrease of RNase during the recovery periods. Further analysis found that the DNA content of all treatments kept relative stability at various periods. The changes in total soluble protein, RNA and RNase were closely related to the freezing resistance of cuttings. It appears that the increase of RNA content caused by cold acclimation induced decrease of RNase activity may be involved in the accumulation of total soluble protein and the induction of freezing resistance of cuttings.
基金supported by the Science and Technology Development Fund of Nanjing Medical University(Grant No.NMUB2019097)。
文摘Objective:The goal of this research was to evaluate the clinical characteristics of patients with primary progressive freezing of gait(PPFOG).Patients and methods:This retrospective study enrolled 8 PPFOG patients and 10 age-matched Parkinson's disease with freezing of gait(PDFOG)patients.All patients underwent structured forms to document clinical manifestations and neuropsychological evaluations.Result:PPFOG patients demonstrated later onset age than PDFOG patients(70.00±9.97 years versus 53.30±5.40 years,respectively;P<0.05).Besides FOG(100%),the most prevalent concomitant symptoms of PPFOG patients were falling(n=6,75%),and fatigue(n=5,62.5%).More PPFOG patients had cerebrovascular risk factors and mild brain magnetic resonance imaging(MRI)abnormalities,which were constant with the manifestations of“cerebral small vessel disease”(P=0.0001).Conclusion:According to this study,the majority of PPFOG patients were linked with cerebrovascular disease risk factors and mild brain MRI abnormalities.More research on larger populations is needed to better understand the potential mechanisms underlying the link between PPFOG and cerebral small vessel disease.