To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
As more information is gathered on the mechanisms of transcription and translation, it is becoming apparent that these processes are highly regulated. The formation of mRNA secondary and tertiary structures is one suc...As more information is gathered on the mechanisms of transcription and translation, it is becoming apparent that these processes are highly regulated. The formation of mRNA secondary and tertiary structures is one such regulatory process that until recently it has not been analysed in depth. Formation of these mRNA structures has the potential to enhance and inhibit alternative splicing of transcripts, and regulate rates and amount of translation. As this regulatory mechanism potentially impacts at both the transcriptional and translational level, while also potentially utilising the vast array of non-coding RNAs, it warrants further investigation. Currently, a variety of high- throughput sequencing techniques including parallel analysis of RNA structure (PARS), fragmentation sequencing (FragSeq) and selective 2-hydroxyl acylation analysed by primer extension (SHAPE) lead the way in the genome-wide identification and analysis of mRNA structure formation. These new sequencing techniques highlight the diversity and complexity of the transcriptome, and demonstrate another regulatory mechanism that could become a target for new therapeutic approaches.展开更多
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
文摘As more information is gathered on the mechanisms of transcription and translation, it is becoming apparent that these processes are highly regulated. The formation of mRNA secondary and tertiary structures is one such regulatory process that until recently it has not been analysed in depth. Formation of these mRNA structures has the potential to enhance and inhibit alternative splicing of transcripts, and regulate rates and amount of translation. As this regulatory mechanism potentially impacts at both the transcriptional and translational level, while also potentially utilising the vast array of non-coding RNAs, it warrants further investigation. Currently, a variety of high- throughput sequencing techniques including parallel analysis of RNA structure (PARS), fragmentation sequencing (FragSeq) and selective 2-hydroxyl acylation analysed by primer extension (SHAPE) lead the way in the genome-wide identification and analysis of mRNA structure formation. These new sequencing techniques highlight the diversity and complexity of the transcriptome, and demonstrate another regulatory mechanism that could become a target for new therapeutic approaches.