期刊文献+
共找到668篇文章
< 1 2 34 >
每页显示 20 50 100
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
1
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
2
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 Multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
在线阅读 下载PDF
A fast connected components labeling algorithm for binary images 被引量:1
3
作者 付宜利 韩现伟 王树国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第3期81-87,共7页
A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labe... A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labeling algorithms.One is a fast pixel scan method,and the other is an array-based Union-Find data structure.The scan procedure assigns each foreground pixel a provisional label according to the location of the pixel.That is to say,it labels the foreground pixels following background pixels and foreground pixels in different ways,which greatly reduces the number of neighbor pixel checks.The array-based Union-Find data structure resolves the label equivalences between provisional labels by using only a single array with path compression,and it improves the efficiency of the resolving procedure which is very time-consuming in general label-equivalence-based algorithms.The experiments on various types of images with different sizes show that the proposed algorithm is superior to other labeling approaches for huge images containing many big connected components. 展开更多
关键词 binary image connected components labeling algorithm Union-Find label-equivalence
在线阅读 下载PDF
A Novel Binary Firefly Algorithm for the Minimum Labeling Spanning Tree Problem 被引量:1
4
作者 Mugang Lin Fangju Liu +1 位作者 Huihuang Zhao Jianzhen Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期197-214,共18页
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria... Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems. 展开更多
关键词 Minimum labeling spanning tree problem binary firefly algorithm META-HEURISTICS discrete optimization
在线阅读 下载PDF
Labeling algorithm and its fairness analysis for autonomous system
5
作者 Han Guodong Wang Hui Wu Jiangxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期806-810,共5页
A kind of packet labeling algorithm for autonomous system is introduced. The fairness of the algorithm for each traffic stream in the integrated-services is analyzed. It is shown that the rate of each stream in the in... A kind of packet labeling algorithm for autonomous system is introduced. The fairness of the algorithm for each traffic stream in the integrated-services is analyzed. It is shown that the rate of each stream in the integrated-services would converge to a stable value if the transmittfing or forwarding rates converge to that of the receiving exponentially. 展开更多
关键词 autonomous system labeling algorithm traffic stream fairness analysis.
在线阅读 下载PDF
THE INNER-SYSTEM LABELING ALGORITHM AND ITS FAIRNESS ANALYSIS
6
作者 Han Guodong Li Yinhai Wu Jiangxing 《Journal of Electronics(China)》 2005年第6期612-618,共7页
On the basis of inner-system labeling signaling used in the integrated access system,a kind of inner-system labeling algorithm is introduced in this paper, and the fairness of the algorithm for each traffic stream in ... On the basis of inner-system labeling signaling used in the integrated access system,a kind of inner-system labeling algorithm is introduced in this paper, and the fairness of the algorithm for each traffic stream in the integrated-services is analyzed. The base of this algorithm is Class of Services (CoS), and each packet entering the relative independent area (an autonomous system) would be labeled according to the service type or Quality of Service (QoS) in demand,and be scheduled and managed within the system (the system can be enlarged if conforming to the same protocol). The experimental results show that each of the stream rate in the integratedservices would converge to a stable value if the rates of transmitting converge to that of the receiving exponentially, that is, the effective traffic of each stream would be fair. 展开更多
关键词 Integrated Access System (IAS) Inner-system labeling labeling algorithm FAIRNESS
在线阅读 下载PDF
Novel Apriori-Based Multi-Label Learning Algorithm by Exploiting Coupled Label Relationship 被引量:1
7
作者 Zhenwu Wang Longbing Cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期206-214,共9页
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati... It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria. 展开更多
关键词 multi-label classification hypothesis testing k nearest neighbor apriori algorithm label coupling
在线阅读 下载PDF
近红外无创血糖浓度的Label Sensitivity算法和支持向量机回归 被引量:3
8
作者 孟琪 赵鹏 +4 位作者 宦克为 李野 姜志侠 张瀚文 周林华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期617-624,共8页
近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在... 近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在预测精度低、预测值与标签值相关性不高等难点,至今没有达到临床要求。近年来,光谱检测技术发展迅猛且机器学习技术在智能信息处理方面具有明显优势,两者结合可以有效提高人体无创血糖医学监测模型的精度和普适性。提出了一种标签敏感度算法(LS),并结合支持向量机方法建立了人体血糖含量预测模型。使用近红外光谱仪采集了4名志愿者食指处动态血液光谱数据(每名志愿者28组数据),并使用多元散射矫正(MSC)方法消除了部分光散射的影响。考虑血糖对不同波长光的吸收有差异,提出了基于血糖浓度标签差的特征波长挑选方法,并构建了标签敏感度支持向量机(LSSVR)预测模型。设计实验,对比该模型与偏最小二乘回归(PLSR)和区分度支持向量机(FSSVR)算法。结果表明,LS算法的最佳特征波长数为32,经特征波长选择后的LSSVR表现最佳,其均方误差降低至0.02 mmol·L^(-1),明显优于全谱段PLSR模型,血糖浓度的预测值与标签值的相关系数提升至99.8%,预测值全部位于可容许误差的克拉克网格A区内。LSSVR模型的优异表现为早日实现血糖的无创监测提供了新思路。 展开更多
关键词 无创血糖 近红外光谱 特征波长 label Sensitivity算法 支持向量机
在线阅读 下载PDF
Learning Multi Labels from Single Label——An Extreme Weak Label Learning Algorithm 被引量:1
9
作者 DUAN Junhong LI Xiaoyu MU Dejun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第2期161-168,共8页
This paper presents a novel algorithm for an extreme form of weak label learning, in which only one of all relevant labels is given for each training sample. Using genetic algorithm, all of the labels in the training ... This paper presents a novel algorithm for an extreme form of weak label learning, in which only one of all relevant labels is given for each training sample. Using genetic algorithm, all of the labels in the training set are optimally divided into several non-overlapping groups to maximize the label distinguishability in every group. Multiple classifiers are trained separately and ensembled for label predictions. Experimental results show significant improvement over previous weak label learning algorithms. 展开更多
关键词 weak-supervised LEARNING genetic algorithm MULTI-label classification
原文传递
Genetic algorithm for multi-protocol label switching
10
作者 孟德宇 梁栋 凌永发 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第2期121-123,共3页
A new method for multi-protocol label switching is presented in this study, whose core idea is to construct model for simulating process of accommodating network online loads and then adopt genetic algorithm to optimi... A new method for multi-protocol label switching is presented in this study, whose core idea is to construct model for simulating process of accommodating network online loads and then adopt genetic algorithm to optimize the model. Due to the heuristic property of evolutional method, the new method is efficient and effective, which is verified by the experiments. 展开更多
关键词 multi-protocol label switching network load genetic algorithm
在线阅读 下载PDF
A parallel pipeline connected-component labeling method for on-orbit space target monitoring
11
作者 LI Zongling ZHANG Qingjun +1 位作者 LONG Teng ZHAO Baojun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1095-1107,共13页
The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor ... The paper designs a peripheral maximum gray differ-ence(PMGD)image segmentation method,a connected-compo-nent labeling(CCL)algorithm based on dynamic run length(DRL),and a real-time implementation streaming processor for DRL-CCL.And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft(TZ-3).The PMGD image segmentation method can segment the image into highly discrete and simple point tar-gets quickly,which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL.Through parallel pipeline design,the storage of the streaming processor is optimized by 55%with no need for external me-mory,the logic is optimized by 60%,and the energy efficiency ratio is 12 times than that of the graphics processing unit,62 times than that of the digital signal proccessing,and 147 times than that of personal computers.Analyzing the results of 8756 images completed on-orbit,the speed is up to 5.88 FPS and the target detection rate is 100%.Our algorithm and implementation method meet the requirements of lightweight,high real-time,strong robustness,full-time,and stable operation in space irradia-tion environment. 展开更多
关键词 Tianzhou-3 cargo spacecraft(TZ-3) connected-component labeling(CCL)algorithms parallel pipeline processing on-orbit space target detection streaming processor
在线阅读 下载PDF
LC-NPLA: Label and Community Information-Based Network Presentation Learning Algorithm
12
作者 Shihu Liu Chunsheng Yang Yingjie Liu 《Intelligent Automation & Soft Computing》 2023年第12期203-223,共21页
Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some l... Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some limitations.For instance,only the structural information of nodes is considered when these kinds of algorithms are constructed.Aiming at this issue,a label and community information-based network presentation learning algorithm(LC-NPLA)is proposed in this paper.First of all,by using the community information and the label information of nodes,the first-order neighbors of nodes are reconstructed.In the next,the random walk strategy is improved by integrating the degree information and label information of nodes.Then,the node sequence obtained from random walk sampling is transformed into the node representation vector by the Skip-Gram model.At last,the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages in the label classification,network reconstruction and link prediction tasks,compared with three benchmark algorithms. 展开更多
关键词 label information community information network representation learning algorithm random walk
在线阅读 下载PDF
Optimization Model and Algorithm for Multi-Label Learning
13
作者 Zhengyang Li 《Journal of Applied Mathematics and Physics》 2021年第5期969-975,共7页
<div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a s... <div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a series of transformations, and then the solution of linear equations is transformed into an optimization problem. Finally, this paper uses some classical optimization algorithms to solve these optimization problems, the convergence of the algorithm is proved, and the advantages and disadvantages of several optimization methods are compared. </div> 展开更多
关键词 Operations Research Multi-label Learning Linear Equations Solving Optimization algorithm
在线阅读 下载PDF
基于改进标签传播算法的舆情社交网络社区发现
14
作者 钱晓东 王卓 《计算机应用研究》 北大核心 2025年第1期48-55,共8页
通过改进的标签传播算法研究了舆情社交网络中的社交主题发现。针对传统算法容易陷入局部最优的问题,依据节点间相似度选择标签传播时的邻居节点;针对传统算法标签更新时的随机性问题,通过结合舆论动力学模型HK的观点交互过程,依据节点... 通过改进的标签传播算法研究了舆情社交网络中的社交主题发现。针对传统算法容易陷入局部最优的问题,依据节点间相似度选择标签传播时的邻居节点;针对传统算法标签更新时的随机性问题,通过结合舆论动力学模型HK的观点交互过程,依据节点影响力的大小更新标签。实验结果表明,该方法在最好情况下(k=0.9)相较于原算法,在稳定性和模块度指标两方面分别提高了31%和78%,并且优于其他几种改进算法。由此可见,该算法相较于原算法及其他改进算法在舆情社交网络的主题社区发现中表现更好。 展开更多
关键词 标签传播算法 舆情社交网络 HK模型 主题社区发现
在线阅读 下载PDF
限定便乘位置的城轨乘务排班计划编制方法研究
15
作者 田志强 王付霞 +2 位作者 连惠 靳欣妮 孙国锋 《交通运输系统工程与信息》 北大核心 2025年第1期133-145,共13页
在城市轨道交通乘务计划中,限定乘务人员便乘位置可以减少乘务班次使用数量,增加计划灵活性。首先,以乘务班次数量最少、非必要劳动时间及便乘时间最短为优化目标,考虑值乘区段覆盖、间休接续、工作时长限制、出退勤时间窗和就餐接续等... 在城市轨道交通乘务计划中,限定乘务人员便乘位置可以减少乘务班次使用数量,增加计划灵活性。首先,以乘务班次数量最少、非必要劳动时间及便乘时间最短为优化目标,考虑值乘区段覆盖、间休接续、工作时长限制、出退勤时间窗和就餐接续等约束,构建限定便乘位置的乘务排班计划0-1整数规划模型;其次,设计列生成算法求解模型,分解模型为集合覆盖线性松弛主问题和受资源约束最短路的定价子问题,通过构建基于列车时刻表的时空轴线网络,设计求解定价子问题的双向标签算法;最后,以某城市轨道交通1号线为背景验证模型和算法的有效性。结果表明:该案例生成早班、白班和夜班的数量分别为47、53和48;限定便乘位置后,各乘务班次的工作时长呈下降趋势,有效提高了乘务班次工作效率;与标签算法相比,双向标签算法的求解效率提升了40%。 展开更多
关键词 城市交通 限定便乘位置 列生成算法 乘务排班计划 标签算法
在线阅读 下载PDF
加速传感器在运动模式弱标签识别中的应用研究
16
作者 李颜瑞 郑锦波 《传感技术学报》 北大核心 2025年第7期1333-1338,共6页
由于运动信息标注的不完整性,导致模式识别过程易出现信息丢失、加速度变化等问题。为此,提出一种利用加速传感器在运动模式弱标签识别中的应用方法。通过加速传感器采集目标在运动过程中的加速度,构建信息采集平台和传感器网络采集动... 由于运动信息标注的不完整性,导致模式识别过程易出现信息丢失、加速度变化等问题。为此,提出一种利用加速传感器在运动模式弱标签识别中的应用方法。通过加速传感器采集目标在运动过程中的加速度,构建信息采集平台和传感器网络采集动态目标的运动信息。将不完整的运动信息整合成运动模式弱标签集合,并采用语义邻域学习算法对其进行填补,在填补后的弱标签集合中,提取弱标签数据特征,将所有特征的相关统计量按重要程度从大到小排序,并选取前面的特征作为输入,使用决策树完成对运动模式的识别。仿真结果表明,所提方法的识别时间在3.5 s内、置信度在90%以上,相比于其他方法,置信度提高了15%以上,且识别准确率高。 展开更多
关键词 机器学习 模式识别 仿真实验 弱标签识别 加速传感器 语义邻域学习算法
在线阅读 下载PDF
基于改进二部图算法的数字化推荐系统研究
17
作者 王鸿雁 《自动化与仪器仪表》 2025年第5期227-231,共5页
为了解决数字化推荐系统在处理大规模数据时存在的数据稀疏性问题,研究提出了一种改进的二部图推荐算法,通过整合用户-项目互动和标签信息,以优化推荐系统资源分配策略。实验结果表明,该算法在精准率、召回率和F1值上均优于传统算法,其... 为了解决数字化推荐系统在处理大规模数据时存在的数据稀疏性问题,研究提出了一种改进的二部图推荐算法,通过整合用户-项目互动和标签信息,以优化推荐系统资源分配策略。实验结果表明,该算法在精准率、召回率和F1值上均优于传统算法,其中精准率为0.91,召回率为0.93,F1值为0.94,改进后的算法显著提升了传统算法的质量。研究提出的推荐系统在财务经济领域的推荐误差主要集中在0.00至0.02的低误差区间,显示出较高的推荐准确性。研究结果说明通过融合标签信息可以显著提升推荐系统的性能,尤其是在财务经济领域。研究为财务经济领域的推荐系统提供了一种新的解决方案,为实现更精准的个性化推荐服务提供了参考。 展开更多
关键词 二部图算法 数字化 推荐系统 标签信息 优化设计
原文传递
基于在线软标签的元学习轴承故障诊断方法
18
作者 陶洁 陈贺文 +1 位作者 赵志磊 邱海文 《湖南工程学院学报(自然科学版)》 2025年第1期42-49,共8页
在极端小样本下,元学习故障诊断模型容易陷入过拟合,导致轴承故障诊断的准确率下降.基于此,提出一种基于在线软标签的元学习轴承故障诊断模型(Online Soft Label Metalearning,OSLM).首先将轴承原始振动信号作为卷积神经网络的输入;然... 在极端小样本下,元学习故障诊断模型容易陷入过拟合,导致轴承故障诊断的准确率下降.基于此,提出一种基于在线软标签的元学习轴承故障诊断模型(Online Soft Label Metalearning,OSLM).首先将轴承原始振动信号作为卷积神经网络的输入;然后在元学习网络框架下搭建卷积神经网络,以多任务的训练方式优化模型;最后,利用在线软标签算法统计模型预测的信息更新软标签,使用软标签指导神经网络训练.并将本文所提方法,在公开轴承数据集上进行试验,对跨工况条件和跨部件下的滚动轴承进行故障诊断实验.实验结果表明,本文所提方法相较其他方法具有更高的识别精度、更强的鲁棒性以及泛化性. 展开更多
关键词 小样本学习 元学习 在线软标签算法 轴承故障诊断
在线阅读 下载PDF
基于伪标签算法的地震事件分类识别方法研究
19
作者 范晓易 王夫运 +1 位作者 陈飞 陈传华 《地震工程学报》 北大核心 2025年第1期160-167,177,共9页
将伪标签算法引入地震类型识别领域,并设计伪标签神经网络法程序,对山东地区2019—2021年M L1.5以上的天然地震、爆破地震、塌陷地震三类事件开展试验。使用优选的有标签样本集预测无标签样本,将其标记为伪标签样本后加入联合训练,并对... 将伪标签算法引入地震类型识别领域,并设计伪标签神经网络法程序,对山东地区2019—2021年M L1.5以上的天然地震、爆破地震、塌陷地震三类事件开展试验。使用优选的有标签样本集预测无标签样本,将其标记为伪标签样本后加入联合训练,并对比传统BP神经网络法和支持向量机法,以初步验证伪标签算法在地震类型识别领域的可行性和在小样本条件下的适用性。试验结果表明:影响伪标签神经网络法分类效果的主要因素有已知样本数量和伪标签样本占比。当已知样本数量介于60~120个、伪标签样本占比20%~30%时,其识别效果最佳。在小样本条件下,伪标签神经网络法的识别率相较于传统BP神经网络法提高了2%~8%,与支持向量机法的识别率差值集中在±4%以内。因此,采用伪标签算法弥补部分地区样本库匮乏的不足,实现小样本地震类型识别,具备一定的应用价值。 展开更多
关键词 伪标签算法 地震类型识别 神经网络法 小样本
在线阅读 下载PDF
地理动画中点要素注记稳定更新的遗传算法
20
作者 魏智威 杨乃 +2 位作者 丁愫 陈业滨 郭仁忠 《测绘通报》 北大核心 2025年第8期83-88,94,共7页
针对地理动画中点要素的注记更新问题,本文提出了一种基于遗传算法的注记配置优化方法。该方法旨在提高地理动画中注记的时序稳定性,避免帧间注记位置的频繁变化和冲突。通过对注记配置约束条件进行分析,综合考虑了注记压盖、位置优先... 针对地理动画中点要素的注记更新问题,本文提出了一种基于遗传算法的注记配置优化方法。该方法旨在提高地理动画中注记的时序稳定性,避免帧间注记位置的频繁变化和冲突。通过对注记配置约束条件进行分析,综合考虑了注记压盖、位置优先级、关联性及时序稳定性等多种因素,并提出了一种自适应调整的遗传算法,以优化地理动画注记的配置效果。为验证该方法,开发了相应的地理动画制作工具原型。试验结果表明,该方法能够有效减少地理动画中帧间注记位置的变化,优化了注记的视觉效果,但是也略微增加了算法耗时。 展开更多
关键词 视频GIS 注记配置 地理可视化 动态可视化 遗传算法
原文传递
上一页 1 2 34 下一页 到第
使用帮助 返回顶部