期刊文献+
共找到11,912篇文章
< 1 2 250 >
每页显示 20 50 100
Impact Dynamics of Supercavitating Projectile with Fluid/Structure Interaction 被引量:1
1
作者 Qian-Kun He Ying-Jie Wei +1 位作者 Cong Wang Jia-Zhong Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第1期101-106,共6页
As supercavitating projectiles move at high speed, the periodic impacts ("tail-slap") on the interior surface of the cavity generally occur due to disturbances. The interactions between the projectile and th... As supercavitating projectiles move at high speed, the periodic impacts ("tail-slap") on the interior surface of the cavity generally occur due to disturbances. The interactions between the projectile and the water/cavity interface are the sources of structural vibrations, which affect the guidance of the vehicle and undermine the structural reliability. The Fluid/Structure Interaction calculation procedure of the tail-slaps of supercavitating projectile is established, and the dynamic behaviours of the projectile operating in tail-slap conditions with and without considering Fluid/Structure Interaction are obtained and compared. The responses of the projectile riding a reducing cavity are studied, and the effect of Fluid/Structure Interaction is also analyzed. The results show that the angular velocity of projectile increases as the body slowing down, and the amplitude of the elastic displacement response decreases at the beginning and increases when the cavity size is close to the diameter of the tail of projectile. The effect of Fluid/Structure Interaction reduces the amplitudes and frequencies of the impact loads and the vibration responses of the body, and when the speed is higher, the effect is more apparent. 展开更多
关键词 supercavitating projectile tail-slap fluid/structure interaction dynamic response finite element method
在线阅读 下载PDF
Changes in shale microstructure and fluid flow under high temperature:Experimental analysis and fluid-structure interaction simulation 被引量:1
2
作者 Xiang-Ru Chen Xin Tang +4 位作者 Rui-Gang Zhang Heng Yang Qiu-Qi Chen Zhang-Ping Yan Lei Zhang 《Petroleum Science》 2025年第4期1699-1711,共13页
Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production eff... Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation. 展开更多
关键词 High temperature treatment Oil shale Longmaxi Formation fluidestructure interaction fluid simulation
原文传递
VIBRATION NUMERICAL ANALYSIS OF COUNTER-ROTATING TURBINE WITH WAKE-FLOW USING FLUID-STRUCTURE INTERACTION METHOD 被引量:3
3
作者 赵振华 吕文亮 +1 位作者 陈伟 吴铁鹰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期66-72,共7页
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ... The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different. 展开更多
关键词 counter-rotating turbine fluid and structure coupling vibration responses numerical analysis
在线阅读 下载PDF
A Normal Mode Stability Analysis of Numerical Interface Conditions for Fluid/Structure Interaction
4
作者 J.W.Banks B.Sjogreen 《Communications in Computational Physics》 SCIE 2011年第7期279-304,共26页
In multi physics computations where a compressible fluid is coupled with a linearly elastic solid,it is standard to enforce continuity of the normal velocities and of the normal stresses at the interface between the f... In multi physics computations where a compressible fluid is coupled with a linearly elastic solid,it is standard to enforce continuity of the normal velocities and of the normal stresses at the interface between the fluid and the solid.In a numerical scheme,there are many ways that velocity-and stress-continuity can be enforced in the discrete approximation.This paper performs a normal mode stability analysis of the linearized problem to investigate the stability of different numerical interface conditions for a model problem approximated by upwind type finite difference schemes.The analysis shows that depending on the ratio of densities between the solid and the fluid,some numerical interface conditions are stable up to the maximal CFL-limit,while other numerical interface conditions suffer from a severe reduction of the stable CFL-limit.The paper also presents a new interface condition,obtained as a simplified characteristic boundary condition,that is proved to not suffer from any reduction of the stable CFL-limit.Numerical experiments in one space dimension show that the new interface condition is stable also for computations with the non-linear Euler equations of compressible fluid flow coupled with a linearly elastic solid. 展开更多
关键词 Finite difference method normal mode analysis fluid/structure interaction compressible fluid interface condition
原文传递
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:21
5
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
在线阅读 下载PDF
Numerical Investigation on Fluid Structure Interaction Considering Rotor Deformation for a Centrifugal Pump 被引量:14
6
作者 YUAN Shouqi PEI Ji YUAN Jianping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期539-545,共7页
The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structu... The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure.The ignorance of fluid structure interaction(FSI)means that the energy transfer between fluid and structure is neglected.To some extent,the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism.In this paper,a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI.Pressure distributions,radial forces,rotor deflection and equivalent stress are analyzed.The results show that the FSI effect to pressure distribution in flow field is complex.The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater,but also in the diffusion section of volute.Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller,and differently,the peak value with FSI is larger with low flow rate.In addition,the effect of FSI on the angle of radial force is quite complex,especially under 0.5Q condition.Fluctuation of radial deflection of the rotor has obvious four periods,of which the extent is relatively small under design condition and is relatively large under off-design condition.Finally,fluctuations of equivalent stress with time are obvious under different conditions,and stress value is small.The proposed research establishes the FSI calculation method for centrifugal pump analysis,and ensures the existing affect by fluid structure interaction. 展开更多
关键词 centrifugal pump fluid structure interaction coupled solution unsteady turbulent flow basic theory
在线阅读 下载PDF
Dynamic Analysis of Tension Leg Platform for Offshore Wind Turbine Support as Fluid-Structure Interaction 被引量:5
7
作者 黄虎 张社荣 《China Ocean Engineering》 SCIE EI 2011年第1期123-131,共9页
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics ... Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions. 展开更多
关键词 offshore wind turbine tension leg platform fluid structure interaction dynamic characteristics yaw resonance vibration
在线阅读 下载PDF
Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method 被引量:9
8
作者 Xue YANG Li YU +1 位作者 Min LIU Haofei PANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第6期1692-1702,共11页
An Arbitrary Lagrangian-Eulerian(ALE)approach with interface tracking is developed in this paper to simulate the supersonic parachute inflation.A two-way interaction between a nonlinear finite element method and a fin... An Arbitrary Lagrangian-Eulerian(ALE)approach with interface tracking is developed in this paper to simulate the supersonic parachute inflation.A two-way interaction between a nonlinear finite element method and a finite volume method is accomplished.In order to apply this interface tracking method to problems with instantaneous large deformation and self-contact,a new virtual structure contact method is proposed to leave room for the body-fitted mesh between the contact structural surfaces.In addition,the breakpoint due to the fluid mesh with negative volume is losslessly restarted by the conservative interpolation method.Based on this method,fluid and structural dynamic behaviors of a highly folded disk-gap-band parachute are obtained.Numerical results such as maximum Root Mean Square(RMS)drag,general canopy shape and the smallest canopy projected areas in the terminal descent state are in accordance with the wind tunnel test results.This analysis reveals the inflation law of the disk-gap-band parachute and provides a new numerical method for supersonic parachute design. 展开更多
关键词 Contact method fluid structure interaction Inflation dynamics Numerical Simula lion:Supersonic paruchute
原文传递
Fluid structure interaction for circulation valve of hydraulic shock absorber 被引量:6
9
作者 陈齐平 舒红宇 +2 位作者 方文强 何联格 杨茂举 《Journal of Central South University》 SCIE EI CAS 2013年第3期648-654,共7页
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me... Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future. 展开更多
关键词 hydraulic shock absorber circulation valve finite element method fluid structure interaction simulation analysis
在线阅读 下载PDF
Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach 被引量:7
10
作者 Syed-shah KHALID Liang ZHANG +1 位作者 Xue-wei ZHANG Ke SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第8期574-582,共9页
The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (... The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5). 展开更多
关键词 Vertical axis tidal turbine Renewable energy Two-way fluid structure interaction (FSI)
原文传递
Numerical Simulation of Low Reynolds Number Fluid-Structure Interaction with Immersed Boundary Method 被引量:3
11
作者 Ming Pingjian Zhang Wenping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第5期480-485,共6页
This article introduces a numerical scheme on the basis of semi-implicit method for pressure-linked equations (SIMPLE) algorithm to simulate incompressible unsteady flows with fluid-structure interaction. The Navier... This article introduces a numerical scheme on the basis of semi-implicit method for pressure-linked equations (SIMPLE) algorithm to simulate incompressible unsteady flows with fluid-structure interaction. The Navier-Stokes equation is discretized spatially with collocated finite volume method and Eulerian implicit method in time domain. The hybrid method that combines immersed boundary method (IBM) and volume of fluid (VOF) method is used to deal with rigid body motion in fluid domain. The details of movement of immersed boundary (IB) and calculation of VOF are also described. This method can be easily applied to any existing finite-volume-based computational fluid dynamics (CFD) solver without complex operation, with which fluid flow interaction of arbitrarily complex geometry can be realized on a fixed mesh. The method is verified by low Reynolds number flows passing both stationary and oscillating cylinders. The drag and lift coefficients acquired by the study well accord with other published results, which indicate the reasonability of the proposed method. 展开更多
关键词 fluid-structure interaction immersed boundary method volume of fluid vortex shedding incompressible flow
原文传递
Fluid−Structure Interaction of Two-Phase Flow Passing Through 90° Pipe Bend Under Slug Pattern Conditions 被引量:3
12
作者 WANG Zhi-wei HE Yan-ping +4 位作者 LI Ming-zhi QIU Ming HUANG Chao LIU Ya-dong WANG Zi 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期914-923,共10页
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte... Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend. 展开更多
关键词 two-phase flow 90°pipe bend slug flow fluidstructure interaction dynamic response characteristics
在线阅读 下载PDF
Channel Stability Analysis by One-Way Fluid Structure Interaction: A Case Study in China 被引量:2
13
作者 Xiaobin Zhu Xiaoling Wang +2 位作者 Minghui Liu Zhen Wang Xiaoxin Zhang 《Transactions of Tianjin University》 EI CAS 2017年第5期451-460,共10页
Channel engineering stability with underground goafs is a complex three-dimensional problem, especially when considering channel leakage, and is influenced by a number of processes, such as seepage, fluid structure in... Channel engineering stability with underground goafs is a complex three-dimensional problem, especially when considering channel leakage, and is influenced by a number of processes, such as seepage, fluid structure interaction (FSI), modeling, and selection of geological mechanical parameters. In this study, stability finite element analysis by one-way FSI was performed by establishing an integrated 3D engineering geological model. The extended Fourier amplitude sensitivity test was used to quantitatively assess the first-order and total sensitivities of the engineering model to critical geological mechanical parameters. Results illustrate that the channel engineering deformation is under a reasonable range and the elastic modulus is the highest total sensitivity parameter for the channel tilt and curvature at 0.7395 and 0.7525, respectively. Moreover, the most observable coupling effects for the curvature and horizontal strain are cohesion (0.1933) and density (0.7410), respectively. © 2017, Tianjin University and Springer-Verlag GmbH Germany. 展开更多
关键词 Elastic moduli fluid structure interaction GEOLOGY STABILITY
在线阅读 下载PDF
Unstructured Grid Immersed Boundary Method for Numerical Simulation of Fluid Structure Interaction 被引量:2
14
作者 明平剑 孙扬哲 +1 位作者 段文洋 张文平 《Journal of Marine Science and Application》 2010年第2期181-186,共6页
This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance ... This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder. 展开更多
关键词 fluid structure interaction immersed boundary method VOS unstructured grids finite volume method
在线阅读 下载PDF
Fluid structure interaction of supersonic parachute with material failure 被引量:2
15
作者 Shunchen NIE Li YU +2 位作者 Yanjun LI Zhihong SUN Bowen QIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期90-100,共11页
The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to study the damage mechanism of parachute,a material failure... The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to study the damage mechanism of parachute,a material failure model is proposed to simulate the failure of canopy fabric.The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler(ALE)method.The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute inflation process,and the simulated dynamic opening load is consistent with the flight test.The damage propagation mechanism of parachute is then investigated,and the effect of parachute velocity on the damage process is discussed.The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure.With the increase of Mach number,the canopy tearing speed increases,and the tearing directions become uncertain at high Mach numbers.The dynamic load when damage occurs increases with the Mach number,and is proportional to the dynamic pressure above the critical Mach number. 展开更多
关键词 Arbitrary Lagrange Euler method Dynamic loads fluid structure interaction Material failure model Parachute damage
原文传递
An improved algorithm for fluid-structure interaction of high-speed trains under crosswind 被引量:34
16
作者 Tian LI Jiye ZHANG Weihua ZHANG 《Journal of Modern Transportation》 2011年第2期75-81,共7页
Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication ... Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains. 展开更多
关键词 high-speed train fluid-structure interaction CROSSWIND AERODYNAMICS relaxation factor
在线阅读 下载PDF
Study of parachute inflation process using fluid–structure interaction method 被引量:19
17
作者 Yu Li Cheng Han +1 位作者 Zhan Ya'nan Li Shaoteng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期272-279,共8页
A direct numerical modeling method for parachute is proposed firstly, and a model for the star-shaped folded parachute with detailed structures is established. The simplified arbitrary Lagrangian-Eulerian fluid struct... A direct numerical modeling method for parachute is proposed firstly, and a model for the star-shaped folded parachute with detailed structures is established. The simplified arbitrary Lagrangian-Eulerian fluid structure interaction (SALE/FSI) method is used to simulate the infla- tion process of a folded parachute, and the flow field calculation is mainly based on operator split- ting technique. By using this method, the dynamic variations of related parameters such as flow field and structure are obtained, and the load jump appearing at the end of initial inflation stage is cap- tured. Numerical results including opening load, drag characteristics, swinging angle, etc. are well consistent with wind tunnel tests. In addition, this coupled method can get more space-time detailed information such as geometry shape, structure, motion, and flow field. Compared with previous inflation time method, this method is a completely theoretical analysis approach without relying on empirical coefficients, which can provide a reference for material selection, performance optimi- zation during parachute design. 展开更多
关键词 Empirical formula fluid-structure interaction Inflation process Opening shockiParachute Wind tunnel test
原文传递
Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method 被引量:3
18
作者 Fan Yuxin Xia Jian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1373-1383,共11页
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a t... A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature. 展开更多
关键词 Flow fields analysis fluidstructure interaction Nonlinear structural dynam-ics Numerical analysis Parachute inflation
原文传递
NUMERICAL SOLUTION OF FLUID-STRUCTURE INTERACTION IN LIQUID-FILLED PIPES BY METHOD OF CHARACTERISTICS 被引量:5
19
作者 YANG Chao YI Menglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期44-49,共6页
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome... Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature. 展开更多
关键词 fluid-structure interaction Method of characteristics COUPLING fluid-filled pipe system OPTIMIZATION
在线阅读 下载PDF
Patient-Specific Echo-Based Fluid-Structure Interaction Modeling Study of Blood Flow in the Left Ventricle with Infarction and Hypertension 被引量:2
20
作者 Longling Fan Jing Yao +2 位作者 Chun Yang Di Xu Dalin Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第2期221-237,共17页
Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)mode... Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)models were introduced to perform ventricle mechanical analysis,investigate flow behaviors,and evaluate the impact of myocardial infarction(MI)and hypertension on blood flow in the LV.Echo image data were acquired from 3 patients with consent obtained:one healthy volunteer(P1),one hypertension patient(P2),and one patient who had an inferior and posterior myocardial infarction(P3).The nonlinear Mooney-Rivlin model was used for ventricle tissue with material parameter values chosen to match echo-measure LV volume data.Using the healthy case as baseline,LV with MI had lower peak flow velocity(30%lower at beginejection)and hypertension LV had higher peak flow velocity(16%higher at begin-filling).The vortex area(defined as the area with vorticity>0)for P3 was 19%smaller than that of P1.The vortex area for P2 was 12%smaller than that of P1.At peak of filling,the maximum flow shear stress(FSS)for P2 and P3 were 390%higher and 63%lower than that of P1,respectively.Meanwhile,LV stress and strain of P2 were 41%and 15%higher than those of P1,respectively.LV stress and strain of P3 were 36%and 42%lower than those of P1,respectively.In conclusion,FSI models could provide both flow and structural stress/strain information which would serve as the base for further cardiovascular investigations related to disease initiation,progression,and treatment strategy selections.Large-scale studies are needed to validate our findings. 展开更多
关键词 fluid-structure interaction model VENTRICLE flow fluid dynamic VENTRICLE material properties VENTRICLE mechanics
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部