Photothermal synergistic catalytic systems for treating volatile organic compounds(VOCs)have attracted signif-icant attention due to their energy efficiency and potential to reduce carbon emissions.However,the mechani...Photothermal synergistic catalytic systems for treating volatile organic compounds(VOCs)have attracted signif-icant attention due to their energy efficiency and potential to reduce carbon emissions.However,the mechanism underlying the synergistic reaction remains a critical issue.This study introduces a photothermal synergistic system for the removal of ethyl acetate(EA)by synthesizing Cu-doped OMS-2(denoted as Cu-OMS-2).Under ultraviolet-visible(UV–Vis)irradiation in a flow system,the Cu-OMS-2 catalyst exhibited significantly enhanced performance in the EA degradation process,nearly doubling the effectiveness of pure OMS-2,and increasing carbon dioxide yield by 20%.This exceptional performance is attributed to the synergistic effect of increased oxygen vacancies(OV)at OMS-2 active sites and Cu doping,as confirmed by H2-TPR,O_(2)-TPD,and CO consump-tion measurements.This study clarifies the catalytic mechanism of light-assisted thermocatalysis and offers a novel strategy for designing photothermal catalysts with homogeneous Cu-doped nanorods for VOC removal.展开更多
Debris flow events are frequent in Tajikistan,yet comprehensive investigations at the regional scale are limited.This study integrates remote sensing,Geographic Information System,and machine learning techniques to ev...Debris flow events are frequent in Tajikistan,yet comprehensive investigations at the regional scale are limited.This study integrates remote sensing,Geographic Information System,and machine learning techniques to evaluate debris flow susceptibility and associated hazards across Tajikistan.A dataset comprising 405 documented debris flow points and 14 influencing factors,encompassing geological,climatic-hydrological,and anthropogenic variables,was established.Three machine learning algorithms—Random Forest,Support Vector Machine(SVM),and Multi-layer Perceptron—were applied to generate susceptibility maps and delineate debris flow risk zones.The results indicate that the areas of higher and high susceptibility accounted for 20.43%and 4.41%of the national area,respectively,and were predominantly concentrated along the Zeravshan and Vakhsh river basins.Among the evaluated models,SVM model demonstrated the highest predictive performance.Beyond conventional topographic and environmental controls,drought conditions were identified as a critical factor influencing debris flow occurrence within the arid and semi-arid mountainous regions of Tajikistan.These findings provide a scientific basis for regional debris flow risk management and disaster mitigation planning,and offer practical guidance for selecting conditioning factors in machine-learning-based susceptibility assessments in other dry mountainous environments.展开更多
Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response ...Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response of an underwater manipulator subjected to pulsating flow,focusing on how different postures affect the behavior of the system.The effects of pulsating parameters and manipulator arrangement on the hydrodynamic coefficient,vibration response,motion trajectory,and vortex shedding behaviors were analyzed.Results indicated that the cross flow vibration displacement in pulsating flow increased by 32.14%compared to uniform flow,inducing a shift in the motion trajectory from a crescent shape to a sideward vase shape.In the absence of interference between the upper and lower arms,the lift coefficient of the manipulator substantially increased with rising pulsating frequency,reaching a maximum increment of 67.0%.This increase in the lift coefficient led to a 67.05%rise in the vibration frequency of the manipulator in the in-line direction.As the pulsating amplitude increased,the drag coefficient of the underwater manipulator rose by 36.79%,but the vibration frequency in the cross-flow direction decreased by 56.26%.Additionally,when the upper and lower arms remained in a state of mutual interference,the cross-flow vibration amplitudes of the upper and lower arms were approximately 1.84 and 4.82 times higher in a circular-elliptical arrangement compared to an elliptical-circular arrangement,respectively.Consequently,the flow field shifted from a P+S pattern to a disordered pattern,disrupting the regularity of the motion trajectory.展开更多
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ...Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and acc...Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data.展开更多
The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic for...The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity.展开更多
Hypersonic flow over a canonical 25°−55°double-cone configuration with a freestream Mach number of 10.38 is numerically investigated.In contrast to a relatively stable and moderate separation region in exper...Hypersonic flow over a canonical 25°−55°double-cone configuration with a freestream Mach number of 10.38 is numerically investigated.In contrast to a relatively stable and moderate separation region in experiments,axisymmetric calculations in the literature demonstrated that the separation bubble continuously grew and notably exceeded the experimental result.To explain the causes of the discrepancy,time-accurate axisymmetric and Three-Dimensional(3D)simulations are conducted for the double-cone flow to investigate the evolution of three-dimensionality and unsteadiness.Both the axisymmetric calculation and the 3D simulation without external disturbances predict a significantly larger separation region than that in experiments and misrepresent the distributions of surface pressure and heat flux.The random forcing approach with two levels of noise amplitude is then applied to 3D simulations.A better agreement with the measured data is observed for the time-averaged heat flux and pressure when the white noise is enforced.As the forcing amplitude is increased,the agreement is slightly improved.However,discrepancies between the 3D results and experimental data still exist in the prediction of the heat flux and pressure distributions,indicating the essential difference between the injected white noise and the wind tunnel freestream disturbances.Realistic noise models are required to reveal the sources of such discrepancies.展开更多
The hydrodynamic response of overland flow to vegetation coverage on convex slopes remains inadequately quantified despite it is critical for soil erosion control in terrains dominated by such topography.This study sy...The hydrodynamic response of overland flow to vegetation coverage on convex slopes remains inadequately quantified despite it is critical for soil erosion control in terrains dominated by such topography.This study systematically investigated the influence of varying vegetation coverage(0%,1.08%,3.24%,4.69%and 9.81%)on the hydrodynamic characteristics of convex slopes through indoor flume experiments under diverse flow discharges(5.5-13.5 m^(3)/h)and slopes(5°-25°).The results revealed three key hydrodynamic mechanisms:(1)Flow retardation and energy dissipation:Increasing vegetation coverage significantly reduced overland flow velocity and promoted higher flow depth,thereby enhancing water retention and energy dissipation.Both stream power(Ω)and unit stream power(ω)declined by 13.9%-30.1%compared to bare slopes.(2)Flow Regime Transition:Froude number(Fr)decreased with increasing vegetation coverage,promoting the transition from supercritical to subcritical flow.The Reynolds number(Re)consistently exceeded 500,indicating the absence of laminar flow.(3)Modification of flow resistance:Vegetation resistance increased nonlinearly with coverage.Maximum bed shear stress was observed at 4.69%coverage(23.5%higher than bare slopes).However,Manning’s(n)and Darcy-Weisbach(f)coefficients did not correlate clearly with Re,indicating that vegetation coverage and slope type feedback significantly change flow resistance mechanisms.展开更多
To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinat...To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinate system.The capture,modulation,and acquisition of unsteady blade surface forces are achieved by using pressure sensors and strain gauges attached to the rotor blades,in conjunction with a wireless telemetry system.Based on the measurement reliability verification,this approach allows for the determination of the static pressure distribution on rotor blade surfaces,enabling the quantitative description of loadability at different spanwise positions along the blade chord.Effects caused by the factors such as Tip Leakage Flow(TLF)and flow separation can be perceived and reflected in the trends of static pressure on the blade surfaces.Simultaneously,the dynamic characteristics of unsteady pressure and stress on the blade surfaces are analyzed.The results indicate that only the pressure signals measured at the mid-chord of the blade tip can distinctly detect the unsteady frequency of TLF due to the oscillation of the low-pressure spot on the pressure surface.Subsequently,with the help of one-dimensional continuous wavelet analysis method,it can be inferred that as the compressor enters stall,the sensors are capable of capturing stall cell frequency under a rotating coordinate system.Furthermore,the stress at the blade root is higher than that at the blade tip,and the frequency band of the vibration can also be measured by the pressure sensors fixed on the casing wall in a stationary frame.While the compressor stalls,the stress at the blade root can be higher,which can provide valuable guidance for monitoring the lifecycle of compressor blades.展开更多
During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optim...During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.展开更多
This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing...This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing to flow transition and eventually to flow blurring as the gas flow rate increases or the tube hole distance decreases.Conversely,an increase in liquid flow rate only facilitates the transition from flow focusing to flow transition.Changes in the gas/liquid flow rate or tube hole distance influence the gas shear effect and the gas inertial impact effect inside the nozzle,which in turn alters the working mode.An increase in gas flow rate results in a shift of the droplet size distribution towards smaller particle sizes in the flow blurring mode,whereas an increase in liquid flow rate produces the opposite effect.Notably,the impact of the gas flow rate on these changes is more pronounced than that of the liquid flow rate.展开更多
Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug ...Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug flow hydrodynamic model consi-dering hydrate phase transition kinetics with heat and mass transfer behaviors.The varying gas physical properties due to pressure and temperature variations are also introduced to evaluate vertical slug flow characteristics.The proposed model is used to carry out a series of numerical simulations to examine the interactions between hydrate phase transition and vertical slug flow hydrodynamics.Furthermore,the hydrate volumetric fractions under different pressure and temperature conditions are predicted.The results reveal that hydrate formation and gas expansion cause the mixture superficial velocity,and the gas and liquid fractions,void fraction in liq-uid slug,and unit length tend to decrease.The increase in outlet pressure leads to an increased hydrate formation rate,which not only increases the hydrate volumetric fraction along the pipe but also causes the upward shift of the hydrate phase transition critical point.展开更多
This study investigates the unsteady flow characteristics of shale oil reservoirs during the depletion development process,with a particular focus on production behavior following fracturing and shut-in stages.Shale r...This study investigates the unsteady flow characteristics of shale oil reservoirs during the depletion development process,with a particular focus on production behavior following fracturing and shut-in stages.Shale reservoirs exhibit distinctive production patterns that differ from traditional oil reservoirs,as their inflow performance does not conform to the classic steady-state relationship.Instead,production is governed by unsteady-state flow behavior,and the combined effects of thewellbore and choke cause the inflowperformance curve to evolve dynamically over time.To address these challenges,this study introduces the concept of a“Dynamic IPR curve”and develops a dynamic production analysis method that integrates production time,continuity across multi-stage state fields,and the interactions between tubing flow and choke flow.This method provides a robust framework to characterize the attenuation trend of reservoir productivity and to accurately describe wellbore flow behavior.By applying the dynamic IPR approach,the study overcomes the limitations of conventional methods,which are unable to capture the temporal variations inherent in shale reservoir production.The proposed methodology offers a theoretical foundation for improved production forecasting,optimization of choke size,and analysis of wellbore tubing characteristics,thereby supporting more effective operational decision-making across different stages of shale reservoir development.展开更多
The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that ...The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that at least one zero-flow arc must be present when the flow of the network reaches its maximum value.This result indicates that the maximum flow of the network will remain constant if a zero-flow arc within a circle is removed;therefore,the maximum flow of each network without circles can be calculated.The first stage involves identifying the zero-flow arc in the circle when the network flow reaches its maximum.The second stage aims to remove the zero-flow arc identified and modified in the first stage,thereby producing a new network without circles.The maximum flow of the original looped network can be obtained by solving the maximum flow of the newly generated acyclic network.Finally,an example is provided to demonstrate the validity and feasibility of this algorithm.This algorithm not only improves computational efficiency but also provides new perspectives and tools for solving similar network optimization problems.展开更多
Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate f...Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate factorization algorithm and internal Newton iterations. An integral boundary layer method based on the dissipation integral is used to account for viscous effects. The computational results about unsteady transonic forces on wings, bodies and control surfaces are in agreement with experimental data.展开更多
Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and...Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices.展开更多
基金supported by the Qilu University of Technology(Shandong Academy of Sciences),the Basic Research Project of Science,Education and Industry Integration Pilot Project(No.2022PY047).
文摘Photothermal synergistic catalytic systems for treating volatile organic compounds(VOCs)have attracted signif-icant attention due to their energy efficiency and potential to reduce carbon emissions.However,the mechanism underlying the synergistic reaction remains a critical issue.This study introduces a photothermal synergistic system for the removal of ethyl acetate(EA)by synthesizing Cu-doped OMS-2(denoted as Cu-OMS-2).Under ultraviolet-visible(UV–Vis)irradiation in a flow system,the Cu-OMS-2 catalyst exhibited significantly enhanced performance in the EA degradation process,nearly doubling the effectiveness of pure OMS-2,and increasing carbon dioxide yield by 20%.This exceptional performance is attributed to the synergistic effect of increased oxygen vacancies(OV)at OMS-2 active sites and Cu doping,as confirmed by H2-TPR,O_(2)-TPD,and CO consump-tion measurements.This study clarifies the catalytic mechanism of light-assisted thermocatalysis and offers a novel strategy for designing photothermal catalysts with homogeneous Cu-doped nanorods for VOC removal.
基金supported by the National Natural Science Foundation of China(42361144880)the Science and Technology Program of Xizang Autonomous Region,China(XZ202402ZD0001)the Qinghai Province Basic Research Program Project,China(2024-ZJ-904).
文摘Debris flow events are frequent in Tajikistan,yet comprehensive investigations at the regional scale are limited.This study integrates remote sensing,Geographic Information System,and machine learning techniques to evaluate debris flow susceptibility and associated hazards across Tajikistan.A dataset comprising 405 documented debris flow points and 14 influencing factors,encompassing geological,climatic-hydrological,and anthropogenic variables,was established.Three machine learning algorithms—Random Forest,Support Vector Machine(SVM),and Multi-layer Perceptron—were applied to generate susceptibility maps and delineate debris flow risk zones.The results indicate that the areas of higher and high susceptibility accounted for 20.43%and 4.41%of the national area,respectively,and were predominantly concentrated along the Zeravshan and Vakhsh river basins.Among the evaluated models,SVM model demonstrated the highest predictive performance.Beyond conventional topographic and environmental controls,drought conditions were identified as a critical factor influencing debris flow occurrence within the arid and semi-arid mountainous regions of Tajikistan.These findings provide a scientific basis for regional debris flow risk management and disaster mitigation planning,and offer practical guidance for selecting conditioning factors in machine-learning-based susceptibility assessments in other dry mountainous environments.
基金Supported by the National Natural Science Foundation of China(No.51905211)A Project of the“20 Regulations for New Universities”Funding Program of Jinan(No.202228116).
文摘Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response of an underwater manipulator subjected to pulsating flow,focusing on how different postures affect the behavior of the system.The effects of pulsating parameters and manipulator arrangement on the hydrodynamic coefficient,vibration response,motion trajectory,and vortex shedding behaviors were analyzed.Results indicated that the cross flow vibration displacement in pulsating flow increased by 32.14%compared to uniform flow,inducing a shift in the motion trajectory from a crescent shape to a sideward vase shape.In the absence of interference between the upper and lower arms,the lift coefficient of the manipulator substantially increased with rising pulsating frequency,reaching a maximum increment of 67.0%.This increase in the lift coefficient led to a 67.05%rise in the vibration frequency of the manipulator in the in-line direction.As the pulsating amplitude increased,the drag coefficient of the underwater manipulator rose by 36.79%,but the vibration frequency in the cross-flow direction decreased by 56.26%.Additionally,when the upper and lower arms remained in a state of mutual interference,the cross-flow vibration amplitudes of the upper and lower arms were approximately 1.84 and 4.82 times higher in a circular-elliptical arrangement compared to an elliptical-circular arrangement,respectively.Consequently,the flow field shifted from a P+S pattern to a disordered pattern,disrupting the regularity of the motion trajectory.
基金financial support provided by the Natural Science Foundation of Hebei Province,China(No.E2024105036)the Tangshan Talent Funding Project,China(Nos.B202302007 and A2021110015)+1 种基金the National Natural Science Foundation of China(No.52264042)the Australian Research Council(No.IH230100010)。
文摘Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.52488201)the National Natural Science Foundation of China(No.52422606).
文摘Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data.
基金supported by the Application Technology of Automotive Steels(No.2021040300048)the National Natural Science Foundation of China(No.52304347)+2 种基金Hebei Provincial Natural Science Foundation(No.E2019501008),China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202320)Natural Science Foundation of Liaoning Province(Nos.2023-MSBA-135 and 2023-BSBA-107)Fundamental Research Funds for the Central Universities(Nos.N2409008 and N2409006).
文摘The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity.
基金supported by the Hong Kong Research Grants Council,China(Nos.15206519,15204322 and 25203721)the National Natural Science Foundation of China(No.12102377)。
文摘Hypersonic flow over a canonical 25°−55°double-cone configuration with a freestream Mach number of 10.38 is numerically investigated.In contrast to a relatively stable and moderate separation region in experiments,axisymmetric calculations in the literature demonstrated that the separation bubble continuously grew and notably exceeded the experimental result.To explain the causes of the discrepancy,time-accurate axisymmetric and Three-Dimensional(3D)simulations are conducted for the double-cone flow to investigate the evolution of three-dimensionality and unsteadiness.Both the axisymmetric calculation and the 3D simulation without external disturbances predict a significantly larger separation region than that in experiments and misrepresent the distributions of surface pressure and heat flux.The random forcing approach with two levels of noise amplitude is then applied to 3D simulations.A better agreement with the measured data is observed for the time-averaged heat flux and pressure when the white noise is enforced.As the forcing amplitude is increased,the agreement is slightly improved.However,discrepancies between the 3D results and experimental data still exist in the prediction of the heat flux and pressure distributions,indicating the essential difference between the injected white noise and the wind tunnel freestream disturbances.Realistic noise models are required to reveal the sources of such discrepancies.
基金financially supported by the National Natural Science Foundation of China(Grant NO.52279056)Inner Mongolia open list project(Grant NO.2024JBGS0023)。
文摘The hydrodynamic response of overland flow to vegetation coverage on convex slopes remains inadequately quantified despite it is critical for soil erosion control in terrains dominated by such topography.This study systematically investigated the influence of varying vegetation coverage(0%,1.08%,3.24%,4.69%and 9.81%)on the hydrodynamic characteristics of convex slopes through indoor flume experiments under diverse flow discharges(5.5-13.5 m^(3)/h)and slopes(5°-25°).The results revealed three key hydrodynamic mechanisms:(1)Flow retardation and energy dissipation:Increasing vegetation coverage significantly reduced overland flow velocity and promoted higher flow depth,thereby enhancing water retention and energy dissipation.Both stream power(Ω)and unit stream power(ω)declined by 13.9%-30.1%compared to bare slopes.(2)Flow Regime Transition:Froude number(Fr)decreased with increasing vegetation coverage,promoting the transition from supercritical to subcritical flow.The Reynolds number(Re)consistently exceeded 500,indicating the absence of laminar flow.(3)Modification of flow resistance:Vegetation resistance increased nonlinearly with coverage.Maximum bed shear stress was observed at 4.69%coverage(23.5%higher than bare slopes).However,Manning’s(n)and Darcy-Weisbach(f)coefficients did not correlate clearly with Re,indicating that vegetation coverage and slope type feedback significantly change flow resistance mechanisms.
基金funded by the National Natural Science Foundation of China(Nos.U24A20138 and No.52376039)the Beijing Natural Science Foundation,China(JQ24017)+1 种基金the National Science and Technology Major Project of China(Nos.J2019-II-0005-0025 and Y2022-II-0002-0005)the Special Fund for the Member of Youth Innovation Promotion Association of Chinese Academy of Sciences,China(No.2018173).
文摘To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinate system.The capture,modulation,and acquisition of unsteady blade surface forces are achieved by using pressure sensors and strain gauges attached to the rotor blades,in conjunction with a wireless telemetry system.Based on the measurement reliability verification,this approach allows for the determination of the static pressure distribution on rotor blade surfaces,enabling the quantitative description of loadability at different spanwise positions along the blade chord.Effects caused by the factors such as Tip Leakage Flow(TLF)and flow separation can be perceived and reflected in the trends of static pressure on the blade surfaces.Simultaneously,the dynamic characteristics of unsteady pressure and stress on the blade surfaces are analyzed.The results indicate that only the pressure signals measured at the mid-chord of the blade tip can distinctly detect the unsteady frequency of TLF due to the oscillation of the low-pressure spot on the pressure surface.Subsequently,with the help of one-dimensional continuous wavelet analysis method,it can be inferred that as the compressor enters stall,the sensors are capable of capturing stall cell frequency under a rotating coordinate system.Furthermore,the stress at the blade root is higher than that at the blade tip,and the frequency band of the vibration can also be measured by the pressure sensors fixed on the casing wall in a stationary frame.While the compressor stalls,the stress at the blade root can be higher,which can provide valuable guidance for monitoring the lifecycle of compressor blades.
基金sponsored by the National Natural Science Foundation of China(Nos.52174002&52204008)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2022E020).
文摘During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.
基金the National Natural Science Foundation of China(52276026).
文摘This study utilizes a visualization nozzle and spray experimental platform to experimentally investigate the flow focusing/blurring nozzle.It is found that the working mode of the nozzle transitions from flow focusing to flow transition and eventually to flow blurring as the gas flow rate increases or the tube hole distance decreases.Conversely,an increase in liquid flow rate only facilitates the transition from flow focusing to flow transition.Changes in the gas/liquid flow rate or tube hole distance influence the gas shear effect and the gas inertial impact effect inside the nozzle,which in turn alters the working mode.An increase in gas flow rate results in a shift of the droplet size distribution towards smaller particle sizes in the flow blurring mode,whereas an increase in liquid flow rate produces the opposite effect.Notably,the impact of the gas flow rate on these changes is more pronounced than that of the liquid flow rate.
基金supported by the National Natural Science Foundation of China(No.52301355)the Natu-ral Science Foundation of Qingdao Municipality(No.23-2-1-108-zyyd-jch)the China University of Petroleum(East China)Independent Innovation Research Project(Science and Engineering)-Leading Talent Cultivation Fund(No.24CX07001A).
文摘Hydrate phase transition may pose risks in pipeline blockage and severe challenges for offshore natural gas hydrate pro-duction.The present work involves the development of a multiphase gas-liquid-solid vertical slug flow hydrodynamic model consi-dering hydrate phase transition kinetics with heat and mass transfer behaviors.The varying gas physical properties due to pressure and temperature variations are also introduced to evaluate vertical slug flow characteristics.The proposed model is used to carry out a series of numerical simulations to examine the interactions between hydrate phase transition and vertical slug flow hydrodynamics.Furthermore,the hydrate volumetric fractions under different pressure and temperature conditions are predicted.The results reveal that hydrate formation and gas expansion cause the mixture superficial velocity,and the gas and liquid fractions,void fraction in liq-uid slug,and unit length tend to decrease.The increase in outlet pressure leads to an increased hydrate formation rate,which not only increases the hydrate volumetric fraction along the pipe but also causes the upward shift of the hydrate phase transition critical point.
基金supported by National Natural Science Foundation of China(Grant No.52474029)National Natural Science Foundation for Young Scientists of China(A)(Grant No.52525403)+2 种基金National Major Science and Technology Projects under the 14th Five-Year Plan(Grant No.2024ZD1405105)Science and Technology Innovation Team Project of Xinjiang Uygur Autonomous Region(Grant No.2024TSYCTD0018)Xinjiang Uygur Autonomous Region.
文摘This study investigates the unsteady flow characteristics of shale oil reservoirs during the depletion development process,with a particular focus on production behavior following fracturing and shut-in stages.Shale reservoirs exhibit distinctive production patterns that differ from traditional oil reservoirs,as their inflow performance does not conform to the classic steady-state relationship.Instead,production is governed by unsteady-state flow behavior,and the combined effects of thewellbore and choke cause the inflowperformance curve to evolve dynamically over time.To address these challenges,this study introduces the concept of a“Dynamic IPR curve”and develops a dynamic production analysis method that integrates production time,continuity across multi-stage state fields,and the interactions between tubing flow and choke flow.This method provides a robust framework to characterize the attenuation trend of reservoir productivity and to accurately describe wellbore flow behavior.By applying the dynamic IPR approach,the study overcomes the limitations of conventional methods,which are unable to capture the temporal variations inherent in shale reservoir production.The proposed methodology offers a theoretical foundation for improved production forecasting,optimization of choke size,and analysis of wellbore tubing characteristics,thereby supporting more effective operational decision-making across different stages of shale reservoir development.
基金The National Natural Science Foundation of China(No.72001107,72271120)the Fundamental Research Funds for the Central Universities(No.NS2024047,NP2024106)the China Postdoctoral Science Foundation(No.2020T130297,2019M660119).
文摘The presence of circles in the network maximum flow problem increases the complexity of the preflow algorithm.This study proposes a novel two-stage preflow algorithm to address this issue.First,this study proves that at least one zero-flow arc must be present when the flow of the network reaches its maximum value.This result indicates that the maximum flow of the network will remain constant if a zero-flow arc within a circle is removed;therefore,the maximum flow of each network without circles can be calculated.The first stage involves identifying the zero-flow arc in the circle when the network flow reaches its maximum.The second stage aims to remove the zero-flow arc identified and modified in the first stage,thereby producing a new network without circles.The maximum flow of the original looped network can be obtained by solving the maximum flow of the newly generated acyclic network.Finally,an example is provided to demonstrate the validity and feasibility of this algorithm.This algorithm not only improves computational efficiency but also provides new perspectives and tools for solving similar network optimization problems.
基金Aeronautical Science Foundation of China (99A52007)
文摘Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate factorization algorithm and internal Newton iterations. An integral boundary layer method based on the dissipation integral is used to account for viscous effects. The computational results about unsteady transonic forces on wings, bodies and control surfaces are in agreement with experimental data.
基金the Australian Research Council Discovery Project(ARC DP 220100851)scheme and would acknowledge that.
文摘Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices.