Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network...Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network models.Training intricate pre-trained models on a sizable dataset requires significant resources to fine-tune hyperparameters carefully.Most existing initialization methods mainly focus on gradient flow-related problems,such as gradient vanishing or exploding,or other existing approaches that require extra models that do not consider our setting,which is more practical.To address these problems,we suggest employing gradient-free heuristic methods to initialize the weights of the final new-added fully connected layer in neural networks froma small set of training data with fewer classes.The approach relies on partitioning the output values from pre-trained models for a small set into two separate intervals determined by the targets.This process is framed as an optimization problem for each output neuron and class.The optimization selects the highest values as weights,considering their direction towards the respective classes.Furthermore,empirical 145 experiments involve a variety of neural networkmodels tested acrossmultiple benchmarks and domains,occasionally yielding accuracies comparable to those achieved with gradient descent methods by using only small subsets.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic...The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains.展开更多
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ...Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.展开更多
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner...Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.展开更多
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg...The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.展开更多
The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane ...The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane significantly influences the value of the geodetic coordinates.This research analyzes this influence and how it can contribute to their solutions.The study investigates the mathematical relation between them and presents an exact formula relating to the geodetic height and the ellipse equation.In addition,a heuristic formula for the relation between the geodetic height and the ellipse equation is proposed,which is independent of the geodetic latitude and has a relative accuracy better than 99.9 %.The calculation is stable,and the cost is low.展开更多
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis...Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
Traditional models for project management have not adequately incorporated a number of factors that are important for resource allocation. This paper proposed a unified timed Petri net model in which scheduling and pl...Traditional models for project management have not adequately incorporated a number of factors that are important for resource allocation. This paper proposed a unified timed Petri net model in which scheduling and planning were collectively carried out to take full advantages of the flexibility of the FMS. Through the lens of system theory, two types of resources were distinguished: major role and auxiliary role, and the major role was used to construct the FMS' Petri net. The method simplified the Petri net's construction and gave a clear flow chart for scheduling. Hence, the auxiliary resource allocation could be easily carried out according to the schedule, which was proposed by heuristic search algorithm. At last, the efficacy of the Petri net model for online scheduling in a resource constrained environment was discussed.展开更多
Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polyn...Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.展开更多
In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is ...In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is proposed to solve the model.Simulation results show that the algorithm can improve the utilization of berths on discrete berth scheduling in the container port.展开更多
Confucianism (especially its teaching theory) is the core of Chinese traditional culture with Confucius as its representative. It has played an indispensable role in the development of Chinese culture. It is the spi...Confucianism (especially its teaching theory) is the core of Chinese traditional culture with Confucius as its representative. It has played an indispensable role in the development of Chinese culture. It is the spiritual pillar of Chinese sustainable development. There are no others that can compare with its teaching method and art. The famous "heuristic teaching theory" is one of its greatest inventions. But many people think that it is Socrates invention. In fact, Socrates "elicitation teaching theory" was invented far later than that of Confucius. This paper aims at investigating of these two theories.展开更多
Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization(MDO) process.The complexity...Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization(MDO) process.The complexity of problem demands highly effi-cient and effective algorithm that can optimize the design.Hyper heuristic approach(HHA) based on meta-heuristics is applied to the optimization of air launched satellite launch vehicle(ASLV).A non-learning random function(NLRF) is proposed to con-trol low-level meta-heuristics(LLMHs) that increases certainty of global solution,an essential ingredient required in product conceptual design phase of aerospace systems.Comprehensive empirical study is performed to evaluate the performance advan-tages of proposed approach over popular non-gradient based optimization methods.Design of ASLV encompasses aerodynamics,propulsion,structure,stages layout,mass distribution,and trajectory modules connected by multidisciplinary feasible design approach.This approach formulates explicit system-level goals and then forwards the design optimization process entirely over to optimizer.This distinctive approach for launch vehicle system design relieves engineers from tedious,iterative task and en-ables them to improve their component level models.Mass is an impetus on vehicle performance and cost,and so it is considered as the core of vehicle design process.Therefore,gross launch mass is to be minimized in HHA.展开更多
The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizi...The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.展开更多
To satisfy the increasing demands of high-speed transmission, high-efficiency computing, and real-time communications in the high-dynamic and heterogeneous networks, the Contact Plan Design(CPD) has attracted continuo...To satisfy the increasing demands of high-speed transmission, high-efficiency computing, and real-time communications in the high-dynamic and heterogeneous networks, the Contact Plan Design(CPD) has attracted continuous attention in recent years, especially for the spatial-node-based Internet of Everything(IoE). In this paper, we study the NP-hardness of contact scheduling and the attenuation of atmospheric precipitation in the spatial-node-based IoE. Two heuristic computing methods for contact plan design are proposed by comprehensively considering the time-varying topology, the intermittent connectivity, and the adaptive transmission in different weather conditions, which are named Contact Plan Design-Particle Swarm Optimization(CPD-PSO) and Contact Plan Design-Greedy algorithm with the Minimum Delivery Time(CPD-GMDT) separately. For the population-based algorithm, CPD-PSO not only solves the CPD problem with a limited-resource condition, but also dynamically adjusts the search scope to ensure the continuous searching capability of the algorithm. For the CPD-GMDT that makes CP decisions based on the current state, the algorithm uses the idea of greedy algorithm to schedule Satellite-Platform Links(SPLs) and Inter Satellite Links(ISLs) respectively using the strategies of optimal matching and load balancing. The simulation results show that the proposed CPD-PSO outperforms Contact Plan Design-Genetic Algorithm(CPD-GA) in terms of fitness and delivery time, and CPD-GMDT presents better overall delay than Fair Contact Plan(FCP).展开更多
Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the re...Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the resource constraints that is a critical sub-problem in partner selection of construction supply chain management because the capacities of the renewable resources supplied by the partners will effect on the project scheduling. Its mathematic model is presented firstly, and analysis on the characteristic of the problem shows that the objective function is non-regular and the problem is NP-complete following which the basic idea for solution is clarified. Based on a definition of preposing activity cost matrix, a heuristic algorithm is brought forward. Analyses on the complexity of the heuristics and the result of numerical studies show that the heuristic algorithm is feasible and relatively effective.展开更多
基金supported by the BK21 FOUR project(AI-driven Convergence Software Education Research Program)funded by the Ministry of Education,School of Computer Science and Engineering,Kyungpook National University,Republic of Korea(4120240214871)supported by the New Faculty Start Up Fund from LSU Health Sciences New Orleans,LA,USA.
文摘Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network models.Training intricate pre-trained models on a sizable dataset requires significant resources to fine-tune hyperparameters carefully.Most existing initialization methods mainly focus on gradient flow-related problems,such as gradient vanishing or exploding,or other existing approaches that require extra models that do not consider our setting,which is more practical.To address these problems,we suggest employing gradient-free heuristic methods to initialize the weights of the final new-added fully connected layer in neural networks froma small set of training data with fewer classes.The approach relies on partitioning the output values from pre-trained models for a small set into two separate intervals determined by the targets.This process is framed as an optimization problem for each output neuron and class.The optimization selects the highest values as weights,considering their direction towards the respective classes.Furthermore,empirical 145 experiments involve a variety of neural networkmodels tested acrossmultiple benchmarks and domains,occasionally yielding accuracies comparable to those achieved with gradient descent methods by using only small subsets.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
基金funded by Ministry of Higher Education(MoHE)Malaysia,under Transdisciplinary Research Grant Scheme(TRGS/1/2019/UKM/01/4/2).
文摘The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains.
文摘Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.
基金supported by the fundings from 2024 Young Talents Program for Science and Technology Thinking Tanks(No.XMSB20240711041)2024 Student Research Program on Dynamic Simulation and Force-on-Force Exercise of Nuclear Security in 3D Interactive Environment Using Reinforcement Learning,Natural Science Foundation of Top Talent of SZTU(No.GDRC202407)+2 种基金Shenzhen Science and Technology Program(No.KCXFZ20240903092603005)Shenzhen Science and Technology Program(No.JCYJ20241202124703004)Shenzhen Science and Technology Program(No.KJZD20230923114117032)。
文摘Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.
基金Financial support was provided by the State Grid Sichuan Electric Power Company Science and Technology Project“Key Research on Development Path Planning and Key Operation Technologies of New Rural Electrification Construction”under Grant No.52199623000G.
文摘The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.
文摘The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane significantly influences the value of the geodetic coordinates.This research analyzes this influence and how it can contribute to their solutions.The study investigates the mathematical relation between them and presents an exact formula relating to the geodetic height and the ellipse equation.In addition,a heuristic formula for the relation between the geodetic height and the ellipse equation is proposed,which is independent of the geodetic latitude and has a relative accuracy better than 99.9 %.The calculation is stable,and the cost is low.
基金National Natural Science Foundation of China(62073212).
文摘Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘Traditional models for project management have not adequately incorporated a number of factors that are important for resource allocation. This paper proposed a unified timed Petri net model in which scheduling and planning were collectively carried out to take full advantages of the flexibility of the FMS. Through the lens of system theory, two types of resources were distinguished: major role and auxiliary role, and the major role was used to construct the FMS' Petri net. The method simplified the Petri net's construction and gave a clear flow chart for scheduling. Hence, the auxiliary resource allocation could be easily carried out according to the schedule, which was proposed by heuristic search algorithm. At last, the efficacy of the Petri net model for online scheduling in a resource constrained environment was discussed.
文摘Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.
文摘In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is proposed to solve the model.Simulation results show that the algorithm can improve the utilization of berths on discrete berth scheduling in the container port.
文摘Confucianism (especially its teaching theory) is the core of Chinese traditional culture with Confucius as its representative. It has played an indispensable role in the development of Chinese culture. It is the spiritual pillar of Chinese sustainable development. There are no others that can compare with its teaching method and art. The famous "heuristic teaching theory" is one of its greatest inventions. But many people think that it is Socrates invention. In fact, Socrates "elicitation teaching theory" was invented far later than that of Confucius. This paper aims at investigating of these two theories.
文摘Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization(MDO) process.The complexity of problem demands highly effi-cient and effective algorithm that can optimize the design.Hyper heuristic approach(HHA) based on meta-heuristics is applied to the optimization of air launched satellite launch vehicle(ASLV).A non-learning random function(NLRF) is proposed to con-trol low-level meta-heuristics(LLMHs) that increases certainty of global solution,an essential ingredient required in product conceptual design phase of aerospace systems.Comprehensive empirical study is performed to evaluate the performance advan-tages of proposed approach over popular non-gradient based optimization methods.Design of ASLV encompasses aerodynamics,propulsion,structure,stages layout,mass distribution,and trajectory modules connected by multidisciplinary feasible design approach.This approach formulates explicit system-level goals and then forwards the design optimization process entirely over to optimizer.This distinctive approach for launch vehicle system design relieves engineers from tedious,iterative task and en-ables them to improve their component level models.Mass is an impetus on vehicle performance and cost,and so it is considered as the core of vehicle design process.Therefore,gross launch mass is to be minimized in HHA.
基金the Program of “Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System” funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.
基金jointly supported by the National Natural Science Foundation in China (61601075, 61671092, 61771120, 61801105)the Fundamental Research Funds for the Central University (N171602002)the Natural Science Foundation Project of CQ CSTC (cstc2016jcyjA0174)
文摘To satisfy the increasing demands of high-speed transmission, high-efficiency computing, and real-time communications in the high-dynamic and heterogeneous networks, the Contact Plan Design(CPD) has attracted continuous attention in recent years, especially for the spatial-node-based Internet of Everything(IoE). In this paper, we study the NP-hardness of contact scheduling and the attenuation of atmospheric precipitation in the spatial-node-based IoE. Two heuristic computing methods for contact plan design are proposed by comprehensively considering the time-varying topology, the intermittent connectivity, and the adaptive transmission in different weather conditions, which are named Contact Plan Design-Particle Swarm Optimization(CPD-PSO) and Contact Plan Design-Greedy algorithm with the Minimum Delivery Time(CPD-GMDT) separately. For the population-based algorithm, CPD-PSO not only solves the CPD problem with a limited-resource condition, but also dynamically adjusts the search scope to ensure the continuous searching capability of the algorithm. For the CPD-GMDT that makes CP decisions based on the current state, the algorithm uses the idea of greedy algorithm to schedule Satellite-Platform Links(SPLs) and Inter Satellite Links(ISLs) respectively using the strategies of optimal matching and load balancing. The simulation results show that the proposed CPD-PSO outperforms Contact Plan Design-Genetic Algorithm(CPD-GA) in terms of fitness and delivery time, and CPD-GMDT presents better overall delay than Fair Contact Plan(FCP).
文摘Resource-constrained project scheduling problem(RCPSP) is an important problem in research on project management. But there has been little attention paid to the objective of minimizing activities' cost with the resource constraints that is a critical sub-problem in partner selection of construction supply chain management because the capacities of the renewable resources supplied by the partners will effect on the project scheduling. Its mathematic model is presented firstly, and analysis on the characteristic of the problem shows that the objective function is non-regular and the problem is NP-complete following which the basic idea for solution is clarified. Based on a definition of preposing activity cost matrix, a heuristic algorithm is brought forward. Analyses on the complexity of the heuristics and the result of numerical studies show that the heuristic algorithm is feasible and relatively effective.