The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were o...The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were obtained by controlling the relaxation finish temperature during the rolling process.The effect of bainite volume fraction on the tensile deformability was systematically investigated via experiments and crystal plasticity finite element model(CPFEM)simulation.The experimental results showed that the steel showed optimal strain hardenability and strength–plasticity matching when the bainite reached 35%.The 3D-CPFEM models with the same grain size and texture characters were established to clarify the influence of stress/strain distribution on PF+B dual phase steel with different bainite contents.The simulation results indicated that an appropriate increase in the bainite content(18%–35%)did not affect the interphase strain difference,but increased the stress distribution in both phases,as a result of enhancing the coordinated deformability of two phases and improving the strength–plasticity matching.When the bainite content increased to 53%,the stress/strain difference between the two phases was greatly increased,and plastic damage between the two phases was caused by the reduction of the coordinated deformability.展开更多
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS...Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.展开更多
The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced...The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced bimodal-grained aluminum matrix nanocomposites.Firstly,the detailed microstructure model is established by constructing the geometry models of CNTs and grain boundaries,which automatically incorporates grain refinement strengthening and load transfer effect.Secondly,a finite element formulation based on the conventional theory of mechanical-based strain gradient plasticity is developed.Furthermore,the deformation and fracture modes for the nanocomposites with various contents and distributions of coarse grains(CGs)are explored based on the scheme.The results indicate that ductility of the composites first increases and then decreases as the content of CGs rises.Moreover,the dispersed distribution exhibits better ductility than concentrated one.Additionally,grain boundaries proved to be the weakest component within the micromodel.A series of interesting phenomena have been observed and discussed upon the refined simulation scheme.This work contributes to the design and further development of CNT/Al nanocomposites,and the proposed scheme can be extended to various bimodal metal composites.展开更多
Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this devic...Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this device in orthodontic treatment. Methods: A finite element model was constructed after extracting the mandibular first premolar, and a long-arm bracket with a traction height of 6 mm was placed on the labial side of the mandibular canine. Three working conditions of 50 g, 100 g, and 150 g were simulated, and the magnitude and distribution of von Mises stress in the periodontal ligament were compared for each condition. Results: The maximum von Mises stress in the periodontal ligament was 0.013281 MPa in the 50 g condition, 0.02536 MPa in the 100 g condition, and 0.035549 MPa in the 150 g condition. As the orthodontic force increased, the stress distribution area in the periodontal ligament also expanded. Conclusion: A 100 g orthodontic force is the most suitable when using long-arm brackets, providing a relatively uniform stress distribution in the periodontal ligament and keeping the stress within a reasonable range.展开更多
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE...A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.展开更多
The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requ...The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials.展开更多
To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of ske...To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design.展开更多
Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano...Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.展开更多
As a key national project,a newly built plateau railway features a large proportion of tunnels and high construction difficulty.To reduce the voids in the secondary lining of tunnels and address issues such as ineffec...As a key national project,a newly built plateau railway features a large proportion of tunnels and high construction difficulty.To reduce the voids in the secondary lining of tunnels and address issues such as ineffective vibration of the vault,vault voiding,and the inability to monitor the casting status during tunnel lining construction with ordinary lining trolleys,a new smart lining trolley with large clearance that integrates functions such as vibration,automatic casting,and pressure monitoring has been developed.This was achieved by combining the functional design of the new smart lining trolley,comparing traditional construction techniques,and introducing information-based and intelligent design concepts.Through simulation calculations using finite element software modeling,it is verified that the structural stiffness,strength,and other performance parameters of the smart lining trolley meet the technical design requirements.展开更多
Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of...Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of graphite under stress in a finite element model,compression tests on disks and three-point bending tests on center-notched beams for fine-grained graphite(CDI-1D and IG11 graphite)were conducted.During these tests,digital image correlation and electronic speckle pattern interferometry techniques were utilized to observe the surface full-field displacements of the specimens.A segmented finite element inverse analysis method was developed to characterize the graphite’s damage evolution by quantifying the reduction in Young’s modulus with tensile and compressive strains in disk specimens.The fracture energy and bilinear tensile softening curve of the graphite were determined by comparing the load–displacement responses of the three-point bending tests and the finite element simulation.Finally,by combining the identified damage laws with a fracture criterion based on fracture energy,a damage–fracture model was established and used to simulate tensile tests on L-shaped specimens with different fillet radii.Simulations indicate that the damage area at the fillet expands with increasing radius,creating a blunting effect that enhances the load-bearing capacity of the specimens.This damage–fracture model can be applied to simulate graphite components in core structures.展开更多
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an...Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.展开更多
Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear t...Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations.展开更多
Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for thes...Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae.展开更多
The increasing occurrence of sinkholes caused by water main bursts has attracted significant research attention in recent years.This study addresses the gap in evaluating soil blowout stability resulting from water ma...The increasing occurrence of sinkholes caused by water main bursts has attracted significant research attention in recent years.This study addresses the gap in evaluating soil blowout stability resulting from water main failures by investigating the three-dimensional stability of blowouts with circular,hemispherical,and spherical openings.Advanced finite element limit analysis(FELA)combined with adaptive meshing is employed to analyze critical factors,including soil cover depth,surcharge pressure,and internal water pressure,that contribute to blowout failure.In addition,dimensionless ratios are used throughout the paper to assess the influence of these factors.Numerical findings are rigorously validated,ensuring reliability and accuracy.Practical design charts are provided to accommodate a wide range of design scenarios,offering valuable guidance for engineers.This study introduces a pioneering sinkhole simulation methodology,leading to the understanding of three-dimensional blowout stability mechanisms.展开更多
In this paper, two new efficient fully nonconforming polynomial finite element methods on arbitrary convex quadrilaterals are constructed to solve the Brinkman problem. Both elements have 12 local degrees of freedom a...In this paper, two new efficient fully nonconforming polynomial finite element methods on arbitrary convex quadrilaterals are constructed to solve the Brinkman problem. Both elements have 12 local degrees of freedom and are uniformly first-order convergent. For the first element, we carefully design a shape function space of only degree four, which is convenient for practical computation. Meanwhile, the velocity solution obtained by our second element has O(h^(2)) convergence order in the case of Darcy limit. These new elements can be regarded as modifications of a known element to effectively improve the computational efficiency, only the shape function space is properly changed. We verify our theoretical findings by numerical examples.展开更多
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to...We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.展开更多
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i...Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.展开更多
Purpose–Type-120 relief valves are critical components of locomotive braking systems,and they rapidly discharge the air pressure during brake release to enable swift pressure relief.In order to develop type-120 relie...Purpose–Type-120 relief valves are critical components of locomotive braking systems,and they rapidly discharge the air pressure during brake release to enable swift pressure relief.In order to develop type-120 relief valve rubber diaphragms with long life and high performance,the damaged faulty samples were analyzed and studied.Design/methodology/approach–Finite element analysis(FEA)was used to investigate the stress distribution and failure mechanism of the rubber diaphragms within the type-120 relief valves under dynamic loading conditions.The Ogden hyperelastic constitutive model was used to fit the diaphragm data obtained from the uniaxial tensile tests,and its suitability for the modeling of large deformations was confirmed.Findings–The FEA results indicated that,when the rubber diaphragms reached their maximum deformation,the peak stress on their upper surfaces was 5.44 MPa.Thus,this region is highly susceptible to fatigue damage.The service life of the rubber diaphragms could be extended by using rubber compounds with high tensile moduli or a fabric-reinforced rubber diaphragm.Originality/value–This study provides valuable data and experience for the development of the rubber diaphragms in the type-120 valves and other long-life rubber products in the railway field.展开更多
This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing...This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs.展开更多
AIM:To investigate the effect of the percent tissue altered(PTA)on the safety after laser-assisted in situ keratomileusis(LASIK)based on linear creep characteristics.METHODS:The linear creep characteristics of the cor...AIM:To investigate the effect of the percent tissue altered(PTA)on the safety after laser-assisted in situ keratomileusis(LASIK)based on linear creep characteristics.METHODS:The linear creep characteristics of the cornea were characterized by the generalized Kelvin-Voigt constitutive relationship with five parameters.Then,the displacement and stress distribution on the anterior and posterior surfaces of the cornea were analyzed by constructing the eye model with different PTA.RESULTS:When PTA was above 39%,the vertex displacements under physiological intraocular pressure(IOP,15 mm Hg)exceeded that of the preoperative glaucoma under average IOP.That is,an excessively high displacement value was found.In addition,with the increase of PTA,the central cornea was stretched thinner and more obviously due to IOP.When PTA was above 39%,the stress at the center of the anterior surface of the residual stroma was more than 20%larger than that of the normal human eye.The residual stroma was forced to stretch more severely due to excessive stress on the anterior surface.This resulted in deformation of the stroma and induced corneal ectasia.Meanwhile,the postoperative vertex displacement increased with the decrease in viscosity ratio.CONCLUSION:PTA less than 39%is the safe range for LASIK surgery.This study may provide a reliable numerical basis for postoperative corneal dilatation and the outcomes after refractive surgery.展开更多
基金supported by the Project of Liaoning Marine Economic Development(Development of high strength pipeline steel for submarine oil and gas transmission)State Key Laboratory of Metal Material for Marine Equipment and Application Funding(No.SKLMEA-K202205).
文摘The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were obtained by controlling the relaxation finish temperature during the rolling process.The effect of bainite volume fraction on the tensile deformability was systematically investigated via experiments and crystal plasticity finite element model(CPFEM)simulation.The experimental results showed that the steel showed optimal strain hardenability and strength–plasticity matching when the bainite reached 35%.The 3D-CPFEM models with the same grain size and texture characters were established to clarify the influence of stress/strain distribution on PF+B dual phase steel with different bainite contents.The simulation results indicated that an appropriate increase in the bainite content(18%–35%)did not affect the interphase strain difference,but increased the stress distribution in both phases,as a result of enhancing the coordinated deformability of two phases and improving the strength–plasticity matching.When the bainite content increased to 53%,the stress/strain difference between the two phases was greatly increased,and plastic damage between the two phases was caused by the reduction of the coordinated deformability.
文摘Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.
基金supported by the National Natural Science Foundation of China(51931009)the Shandong Provincial Natural Science Foundation(ZR2023ME097).
文摘The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced bimodal-grained aluminum matrix nanocomposites.Firstly,the detailed microstructure model is established by constructing the geometry models of CNTs and grain boundaries,which automatically incorporates grain refinement strengthening and load transfer effect.Secondly,a finite element formulation based on the conventional theory of mechanical-based strain gradient plasticity is developed.Furthermore,the deformation and fracture modes for the nanocomposites with various contents and distributions of coarse grains(CGs)are explored based on the scheme.The results indicate that ductility of the composites first increases and then decreases as the content of CGs rises.Moreover,the dispersed distribution exhibits better ductility than concentrated one.Additionally,grain boundaries proved to be the weakest component within the micromodel.A series of interesting phenomena have been observed and discussed upon the refined simulation scheme.This work contributes to the design and further development of CNT/Al nanocomposites,and the proposed scheme can be extended to various bimodal metal composites.
文摘Objective: To compare the stress distribution in the periodontal ligament under different orthodontic forces during canine distalization using long-arm brackets, and to determine the optimal force value for this device in orthodontic treatment. Methods: A finite element model was constructed after extracting the mandibular first premolar, and a long-arm bracket with a traction height of 6 mm was placed on the labial side of the mandibular canine. Three working conditions of 50 g, 100 g, and 150 g were simulated, and the magnitude and distribution of von Mises stress in the periodontal ligament were compared for each condition. Results: The maximum von Mises stress in the periodontal ligament was 0.013281 MPa in the 50 g condition, 0.02536 MPa in the 100 g condition, and 0.035549 MPa in the 150 g condition. As the orthodontic force increased, the stress distribution area in the periodontal ligament also expanded. Conclusion: A 100 g orthodontic force is the most suitable when using long-arm brackets, providing a relatively uniform stress distribution in the periodontal ligament and keeping the stress within a reasonable range.
基金the National Natural Science Foundation of China(No.11672238)the 111 Project(No.BP0719007)the Shaanxi Province Natural Science Foundation(No.2020JZ-06)for the financial support.
文摘A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.
基金supported by the National Natural Science Foundation of China(Grant No.52101058,51875541).
文摘The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials.
文摘To effectively address the challenge where the speed of tunnel lining construction struggles to match that of tunnel face and inverted arch construction,and to enhance the quality of secondary lining,a new type of skeleton-free,traversing secondary lining trolley has been developed.This trolley features a set of gantries paired with two sets of formwork.The formwork adopts a multi-segment hinged and strengthened design,ensuring its own strength can meet the requirements of secondary lining concrete pouring without relying on the support of the gantries.When retracted,the formwork can be transported by the gantries through another set of formwork in the supporting state,enabling early formwork support,effectively accelerating the construction progress of the tunnel’s secondary lining,and extending the maintenance time of the secondary lining with the formwork.Finite element software modeling was used for simulation calculations,and the results indicate that the structural strength,stiffness,and other performance parameters of the new secondary lining trolley meet the design requirements,verifying the rationality of the design.
基金supported by Scientific Research Projects Department of Istanbul Technical University.Project Number:MGA-2018-41546.Grant receiver:E.T.
文摘Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.
文摘As a key national project,a newly built plateau railway features a large proportion of tunnels and high construction difficulty.To reduce the voids in the secondary lining of tunnels and address issues such as ineffective vibration of the vault,vault voiding,and the inability to monitor the casting status during tunnel lining construction with ordinary lining trolleys,a new smart lining trolley with large clearance that integrates functions such as vibration,automatic casting,and pressure monitoring has been developed.This was achieved by combining the functional design of the new smart lining trolley,comparing traditional construction techniques,and introducing information-based and intelligent design concepts.Through simulation calculations using finite element software modeling,it is verified that the structural stiffness,strength,and other performance parameters of the smart lining trolley meet the technical design requirements.
基金supported by the National Natural Science Foundation of China(No.52278251)Guizhou Provincial Sciences and Technology Projects(ZK[2022]Key 007).
文摘Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of graphite under stress in a finite element model,compression tests on disks and three-point bending tests on center-notched beams for fine-grained graphite(CDI-1D and IG11 graphite)were conducted.During these tests,digital image correlation and electronic speckle pattern interferometry techniques were utilized to observe the surface full-field displacements of the specimens.A segmented finite element inverse analysis method was developed to characterize the graphite’s damage evolution by quantifying the reduction in Young’s modulus with tensile and compressive strains in disk specimens.The fracture energy and bilinear tensile softening curve of the graphite were determined by comparing the load–displacement responses of the three-point bending tests and the finite element simulation.Finally,by combining the identified damage laws with a fracture criterion based on fracture energy,a damage–fracture model was established and used to simulate tensile tests on L-shaped specimens with different fillet radii.Simulations indicate that the damage area at the fillet expands with increasing radius,creating a blunting effect that enhances the load-bearing capacity of the specimens.This damage–fracture model can be applied to simulate graphite components in core structures.
基金supported by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.Q2023J012).
文摘Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.
文摘Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations.
文摘Total hip arthroplasty for adults with sequelae from childhood hip disorders poses significant challenges due to altered anatomy.The paper published by Oommen et al reviews the essential management strategies for these complex cases.This article explores the integration of finite element analysis(FEA)to enhance surgical precision and outcomes.FEA provides detailed biomechanical insights,aiding in preoperative planning,implant design,and surgical technique optimization.By simulating implant configurations and assessing bone quality,FEA helps in customizing implants and evaluating surgical techniques like subtrochanteric shortening osteotomy.Advanced imaging techniques,such as 3D printing,virtual reality,and augmented reality,further enhance total hip arthroplasty precision.Future research should focus on validating FEA models,developing patient-specific simulations,and promoting multidisciplinary collaboration.Integrating FEA and advanced technologies in total hip arthroplasty can improve functional outcomes,reduce complications,and enhance quality of life for patients with childhood hip disorder sequelae.
文摘The increasing occurrence of sinkholes caused by water main bursts has attracted significant research attention in recent years.This study addresses the gap in evaluating soil blowout stability resulting from water main failures by investigating the three-dimensional stability of blowouts with circular,hemispherical,and spherical openings.Advanced finite element limit analysis(FELA)combined with adaptive meshing is employed to analyze critical factors,including soil cover depth,surcharge pressure,and internal water pressure,that contribute to blowout failure.In addition,dimensionless ratios are used throughout the paper to assess the influence of these factors.Numerical findings are rigorously validated,ensuring reliability and accuracy.Practical design charts are provided to accommodate a wide range of design scenarios,offering valuable guidance for engineers.This study introduces a pioneering sinkhole simulation methodology,leading to the understanding of three-dimensional blowout stability mechanisms.
基金Supported by the National Natural Science Foundation of China(Grant No.12201254)。
文摘In this paper, two new efficient fully nonconforming polynomial finite element methods on arbitrary convex quadrilaterals are constructed to solve the Brinkman problem. Both elements have 12 local degrees of freedom and are uniformly first-order convergent. For the first element, we carefully design a shape function space of only degree four, which is convenient for practical computation. Meanwhile, the velocity solution obtained by our second element has O(h^(2)) convergence order in the case of Darcy limit. These new elements can be regarded as modifications of a known element to effectively improve the computational efficiency, only the shape function space is properly changed. We verify our theoretical findings by numerical examples.
基金financially supported by the Russian federal research project No.FWZZ-2022-0026“Innovative aspects of electro-dynamics in problems of exploration and oilfield geophysics”.
文摘We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42102346,42172301).
文摘Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.
基金supported by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(Grant No.N2023J053).
文摘Purpose–Type-120 relief valves are critical components of locomotive braking systems,and they rapidly discharge the air pressure during brake release to enable swift pressure relief.In order to develop type-120 relief valve rubber diaphragms with long life and high performance,the damaged faulty samples were analyzed and studied.Design/methodology/approach–Finite element analysis(FEA)was used to investigate the stress distribution and failure mechanism of the rubber diaphragms within the type-120 relief valves under dynamic loading conditions.The Ogden hyperelastic constitutive model was used to fit the diaphragm data obtained from the uniaxial tensile tests,and its suitability for the modeling of large deformations was confirmed.Findings–The FEA results indicated that,when the rubber diaphragms reached their maximum deformation,the peak stress on their upper surfaces was 5.44 MPa.Thus,this region is highly susceptible to fatigue damage.The service life of the rubber diaphragms could be extended by using rubber compounds with high tensile moduli or a fabric-reinforced rubber diaphragm.Originality/value–This study provides valuable data and experience for the development of the rubber diaphragms in the type-120 valves and other long-life rubber products in the railway field.
基金supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Science and Technology Major Project of China(2016ZX05014002-006)the National Natural Science Foundation of China(42072234)。
文摘This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs.
基金Supported by National Natural Science Foundation of China(No.62165010)The National Key Research and Development Program of China(No.2022YFC2404502).
文摘AIM:To investigate the effect of the percent tissue altered(PTA)on the safety after laser-assisted in situ keratomileusis(LASIK)based on linear creep characteristics.METHODS:The linear creep characteristics of the cornea were characterized by the generalized Kelvin-Voigt constitutive relationship with five parameters.Then,the displacement and stress distribution on the anterior and posterior surfaces of the cornea were analyzed by constructing the eye model with different PTA.RESULTS:When PTA was above 39%,the vertex displacements under physiological intraocular pressure(IOP,15 mm Hg)exceeded that of the preoperative glaucoma under average IOP.That is,an excessively high displacement value was found.In addition,with the increase of PTA,the central cornea was stretched thinner and more obviously due to IOP.When PTA was above 39%,the stress at the center of the anterior surface of the residual stroma was more than 20%larger than that of the normal human eye.The residual stroma was forced to stretch more severely due to excessive stress on the anterior surface.This resulted in deformation of the stroma and induced corneal ectasia.Meanwhile,the postoperative vertex displacement increased with the decrease in viscosity ratio.CONCLUSION:PTA less than 39%is the safe range for LASIK surgery.This study may provide a reliable numerical basis for postoperative corneal dilatation and the outcomes after refractive surgery.