We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to...We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.展开更多
Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.T...Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.展开更多
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr...A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.展开更多
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
This study develops a mesoscopic framework and methodology for the modeling of microcracks in concrete. A new algorithm is first proposed for the generation of random concrete meso-structure including microcracks and ...This study develops a mesoscopic framework and methodology for the modeling of microcracks in concrete. A new algorithm is first proposed for the generation of random concrete meso-structure including microcracks and then coupled with the extended finite element method to simulate the heterogeneities and discontinuities present in the meso-structure of concrete. The proposed procedure is verified and exemplified by a series of numerical simulations. The simulation results show that microcracks can exert considerable impact on the fracture performance of concrete. More broadly, this work provides valuable insight into the initiation and propagation mechanism of microcracks in concrete and helps to foster a better understanding of the micro-mechanical behavior of cementitious materials.展开更多
Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid...Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.展开更多
The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems tha...The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.展开更多
With the development of geophysical exploration technology,the anisotropy of underground media has got more and more attention.At present,there are few studies on the anisotropy of the induced polarization method.This...With the development of geophysical exploration technology,the anisotropy of underground media has got more and more attention.At present,there are few studies on the anisotropy of the induced polarization method.This article explores the effect of anisotropy on the underground media of the induced polarization method under three-dimensional complex terrain.The research work transforms the underground electric field control equation into a variational problem,and use the unstructured finite element method to construct a large linear equation system for solving electric potentials.By the sparse matrix compression technique and symmetric successive over-relaxation preconditioned conjugate gradient algorithm(SSOR-PCG)to solve the equation system.Finally,the article uses the classic central gradient array method to obtain the forward apparent polarizability value.The calculation results of the model find that different anisotropic conditions will significantly affect the forward results which show a strong directional correlation,revealing the importance of considering anisotropy in practical work.展开更多
The extended finite element method(XFEM) is a numerical method for modeling discontinuities within the classical finite element framework. The computation mesh in XFEM is independent of the discontinuities, such that ...The extended finite element method(XFEM) is a numerical method for modeling discontinuities within the classical finite element framework. The computation mesh in XFEM is independent of the discontinuities, such that remeshing for moving discontinuities can be overcome. The extended finite element method is presented for hydro-mechanical modeling of impermeable discontinuities in rock. The governing equation of XFEM for hydraulic fracture modeling is derived by the virtual work principle of the fracture problem considering the water pressure on crack surface. The coupling relationship between water pressure gradient on crack surface and fracture opening width is obtained by semi-analytical and semi-numerical method. This method simplifies coupling analysis iteration and improves computational precision. Finally, the efficiency of the proposed method for modeling hydraulic fracture problems is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed.展开更多
This paper presents the modeling of 2D CSAMT responses generated by horizontal electric dipole using the separation of primary and secondary field technique. The primary field is calculated using 1D analytical solutio...This paper presents the modeling of 2D CSAMT responses generated by horizontal electric dipole using the separation of primary and secondary field technique. The primary field is calculated using 1D analytical solution for homogeneous earth and it is used to calculate the secondary electric field in the inhomogeneous Helmholtz Equation. Calculation of Helmholtz Equation is carried out using the finite element method. Validation of this modeling is conducted by comparison of numerical results with 1D analytical response for the case of homogeneous and layered earth. The comparison of CSAMT responses are also provided for 2D cases of vertical contact and anomalous conductive body with the 2D magnetotelluric (MT) responses. The results of this study are expected to provide better interpretation of the 2D CSAMT data.展开更多
An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. I...An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. In this paper, a threedimensional (3D) FE model of the human middle ear was constructed, including the tympanic membrane, ossicular bones, and middle ear suspensory ligaments/museles. This model was constructed based on a complete set of computerized tomography section images of a healthy volunteer's left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motions of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. The result shows that the model is reasonable in predicting the biomechanics of the human middle ear.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE...A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.展开更多
A combined method for the fast 3-D finite element modeling of defect responses in nondestructive testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in technique, differen...A combined method for the fast 3-D finite element modeling of defect responses in nondestructive testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in technique, difference field technique and iterative solution technique. Utilizing the zoom-in technique, the computational zone focuses on a relatively small domain around the defect. Employing the difference field technique, the axisymmetrical field solution corresponding to the case with no defect can be used to simplify the mesh generation and obtain the modeling results quickly. Using the iterative solution technique, the matrix equation system in the 3-D finite element modeling of nondestructive probe signals can easily be solved. The sample calculation shows that the presented method is highly effective and can consequently save significant computer resources.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge...In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.展开更多
Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear t...Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations.展开更多
This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solv...This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.展开更多
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i...Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.展开更多
基金financially supported by the Russian federal research project No.FWZZ-2022-0026“Innovative aspects of electro-dynamics in problems of exploration and oilfield geophysics”.
文摘We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.
基金Project supported by the National MCF Energy R&D Program(Grant No.2022YFE03190100)the National Natural Science Foundation of China(Grant Nos.12422513,12105035,and U21A20438)the Xiaomi Young Talents Program.
文摘Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of ChinaProject(1204GKCA065)supported by the Key Technology R&D Program of Gansu Province,China+1 种基金Project(201210)supported by the Fundamental Research Funds for the Universities of Gansu Province,ChinaProject(J201304)supported by the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China
文摘A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金supported by the National Basic Research Program of China(2014CB046904)the Hubei Provincial Key Laboratory of Safety for Geotechnical and Structural Engineering at Wuhan University(HBKLCIV201207)the China Postdoctoral Science Foundation(2013M540604)
文摘This study develops a mesoscopic framework and methodology for the modeling of microcracks in concrete. A new algorithm is first proposed for the generation of random concrete meso-structure including microcracks and then coupled with the extended finite element method to simulate the heterogeneities and discontinuities present in the meso-structure of concrete. The proposed procedure is verified and exemplified by a series of numerical simulations. The simulation results show that microcracks can exert considerable impact on the fracture performance of concrete. More broadly, this work provides valuable insight into the initiation and propagation mechanism of microcracks in concrete and helps to foster a better understanding of the micro-mechanical behavior of cementitious materials.
基金Projects(2006AA06Z105, 2007AA06Z134) supported by the National High-Tech Research and Development Program of ChinaProjects(2007, 2008) supported by China Scholarship Council (CSC)
文摘Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.
基金financial support by Severo Ochoa Centre of Excellence (2019-2023) Grant No. CEX2018-000797-Sfunded by MCIN/AEI/10.13039/501100011033+1 种基金research projects BIA2017-84752-RPID2020-119598RB-I00
文摘The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.
文摘With the development of geophysical exploration technology,the anisotropy of underground media has got more and more attention.At present,there are few studies on the anisotropy of the induced polarization method.This article explores the effect of anisotropy on the underground media of the induced polarization method under three-dimensional complex terrain.The research work transforms the underground electric field control equation into a variational problem,and use the unstructured finite element method to construct a large linear equation system for solving electric potentials.By the sparse matrix compression technique and symmetric successive over-relaxation preconditioned conjugate gradient algorithm(SSOR-PCG)to solve the equation system.Finally,the article uses the classic central gradient array method to obtain the forward apparent polarizability value.The calculation results of the model find that different anisotropic conditions will significantly affect the forward results which show a strong directional correlation,revealing the importance of considering anisotropy in practical work.
基金Project(2011CB013505)supported by the National Basic Research Program of ChinaProject(51279100)supported by the National Natural Science Foundation of China
文摘The extended finite element method(XFEM) is a numerical method for modeling discontinuities within the classical finite element framework. The computation mesh in XFEM is independent of the discontinuities, such that remeshing for moving discontinuities can be overcome. The extended finite element method is presented for hydro-mechanical modeling of impermeable discontinuities in rock. The governing equation of XFEM for hydraulic fracture modeling is derived by the virtual work principle of the fracture problem considering the water pressure on crack surface. The coupling relationship between water pressure gradient on crack surface and fracture opening width is obtained by semi-analytical and semi-numerical method. This method simplifies coupling analysis iteration and improves computational precision. Finally, the efficiency of the proposed method for modeling hydraulic fracture problems is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed.
文摘This paper presents the modeling of 2D CSAMT responses generated by horizontal electric dipole using the separation of primary and secondary field technique. The primary field is calculated using 1D analytical solution for homogeneous earth and it is used to calculate the secondary electric field in the inhomogeneous Helmholtz Equation. Calculation of Helmholtz Equation is carried out using the finite element method. Validation of this modeling is conducted by comparison of numerical results with 1D analytical response for the case of homogeneous and layered earth. The comparison of CSAMT responses are also provided for 2D cases of vertical contact and anomalous conductive body with the 2D magnetotelluric (MT) responses. The results of this study are expected to provide better interpretation of the 2D CSAMT data.
基金National Natural Science Foundation of China ( No. 10772121)Med-Science Cross Research Foundation of Shanghai Jiaotong University, China(No.YG2007MS14)
文摘An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. In this paper, a threedimensional (3D) FE model of the human middle ear was constructed, including the tympanic membrane, ossicular bones, and middle ear suspensory ligaments/museles. This model was constructed based on a complete set of computerized tomography section images of a healthy volunteer's left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motions of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. The result shows that the model is reasonable in predicting the biomechanics of the human middle ear.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
基金the National Natural Science Foundation of China(No.11672238)the 111 Project(No.BP0719007)the Shaanxi Province Natural Science Foundation(No.2020JZ-06)for the financial support.
文摘A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.
文摘A combined method for the fast 3-D finite element modeling of defect responses in nondestructive testing of electromagnetics is presented. The method consists of three numerical techniques: zoom-in technique, difference field technique and iterative solution technique. Utilizing the zoom-in technique, the computational zone focuses on a relatively small domain around the defect. Employing the difference field technique, the axisymmetrical field solution corresponding to the case with no defect can be used to simplify the mesh generation and obtain the modeling results quickly. Using the iterative solution technique, the matrix equation system in the 3-D finite element modeling of nondestructive probe signals can easily be solved. The sample calculation shows that the presented method is highly effective and can consequently save significant computer resources.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12371393,11971150 and 11801143)Natural Science Foundation of Henan Province(Grant No.242300421047).
文摘In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.
文摘Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations.
基金supported by the National Natural Science Foundation of China Excellence Research Group Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.12588201)the National Key R&D Program of China(Grant No.2023YFA1008901)+1 种基金the National Nat-ural Science Foundation of China(Grant No.12172009)supported by“The Fundamental Research Funds for the Central Universities,Peking University”.
文摘This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.42102346,42172301).
文摘Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.