We present a fractional-order three-dimensional chaotic system, which can generate four-wing chaotic attractor. Dy- namics of the fractional-order system is investigated by numerical simulations. To rigorously verify ...We present a fractional-order three-dimensional chaotic system, which can generate four-wing chaotic attractor. Dy- namics of the fractional-order system is investigated by numerical simulations. To rigorously verify the chaos properties of this system, the existence of horseshoe in the four-wing attractor is presented. Firstly, a Poincar6 section is selected properly, and a first-return Poincar6 map is established. Then, a one-dimensional tensile horseshoe is discovered, which verifies the chaos existence of the system in mathematical view. Finally, the fractional-order chaotic attractor is imple- mented physically with a field-programmable gate array (FPGA) chip, which is useful in further engineering applications of information encryption and secure communications.展开更多
Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaini...Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaining working resonant mode with high quality is key to improve the performance of piezoelectric resonators. In this paper, the resonance characteristics of a rectangular lead zirconium titanate(PZT) piezoelectric resonator are studied. On the basis of the field-programmable gate array(FPGA) embedded system, direct digital synthesizer(DDS) and automatic gain controller(AGC) are used to generate the driving signals with precisely adjustable frequency and amplitude. The driving signals are used to excite the piezoelectric resonator to the working vibration mode. The influence of the connection of driving electrodes and voltage amplitude on the vibration of the resonator is studied. The quality factor and vibration linearity of the resonator are studied with various driving methods mentioned in this paper. The resonator reaches resonant mode at 330 kHz by different driving methods.The relationship between resonant amplitude and driving signal amplitude is linear. The quality factor reaches over 150 by different driving methods. The results provide a theoretical reference for the efficient excitation of the piezoelectric resonator.展开更多
The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and perf...The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.展开更多
With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivota...With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.展开更多
Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we p...Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.展开更多
In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for impr...In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for improving the accuracy of the drive phase in the gyroscope drive mode.Through the principle of bias signal generation,it can be concluded that the deviation of the drive phase is the main factor affecting the bias stability.To fulfill the purpose of precise drive phase control,a digital signal processing circuit based on the field-programmable gate array(FPGA) with the phase-lock closed-loop control method is described and a demodulation method for phase error suppression is given.Compared with the analog circuit,the bias drift is largely reduced in the new digital circuit and the bias stability is improved from 60 to 19 °/h.The new digital control method can greatly increase the drive phase accuracy,and thus improve the bias stability.展开更多
移动终端通过小区搜索完成与网络的接入工作。为了更快地完成时分长期演进(time division long term evolution,TD-LTE)系统小区搜索过程,与传统数字信号处理(digital signal processing,DSP)串行模式对比,从速度和面积两方面综合考虑,...移动终端通过小区搜索完成与网络的接入工作。为了更快地完成时分长期演进(time division long term evolution,TD-LTE)系统小区搜索过程,与传统数字信号处理(digital signal processing,DSP)串行模式对比,从速度和面积两方面综合考虑,提出一种基于现场可编程门阵列(field programmable gate array,FPGA)的多通道并行小区搜索架构。主要工作集中在小区搜索整体方案设计和FPGA硬件实现上,在算法上对整个小区搜索算法架构进行了改进,同时根据硬件需求,利用以时钟换取速度的思想对FPGA硬件实现架构进行了优化。采用多通道并行高速乘法器进行序列相关检测和动态门限配置的方法,大大缩短了TD-LTE小区搜索的处理时间。并以Altera的EP4SGX230KF40C2芯片作为硬件平台进行了Modelsim功能仿真、板级验证等工作。实验结果表明,该设计方案的处理速度和数据精度均满足TD-LTE系统测试要求,性能远优于传统的DSP架构模式,可以应用到实际工程中。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61502340 and 61374169)the Application Base and Frontier Technology Research Project of Tianjin,China(Grant No.15JCYBJC51800)the South African National Research Foundation Incentive Grants(Grant No.81705)
文摘We present a fractional-order three-dimensional chaotic system, which can generate four-wing chaotic attractor. Dy- namics of the fractional-order system is investigated by numerical simulations. To rigorously verify the chaos properties of this system, the existence of horseshoe in the four-wing attractor is presented. Firstly, a Poincar6 section is selected properly, and a first-return Poincar6 map is established. Then, a one-dimensional tensile horseshoe is discovered, which verifies the chaos existence of the system in mathematical view. Finally, the fractional-order chaotic attractor is imple- mented physically with a field-programmable gate array (FPGA) chip, which is useful in further engineering applications of information encryption and secure communications.
文摘Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaining working resonant mode with high quality is key to improve the performance of piezoelectric resonators. In this paper, the resonance characteristics of a rectangular lead zirconium titanate(PZT) piezoelectric resonator are studied. On the basis of the field-programmable gate array(FPGA) embedded system, direct digital synthesizer(DDS) and automatic gain controller(AGC) are used to generate the driving signals with precisely adjustable frequency and amplitude. The driving signals are used to excite the piezoelectric resonator to the working vibration mode. The influence of the connection of driving electrodes and voltage amplitude on the vibration of the resonator is studied. The quality factor and vibration linearity of the resonator are studied with various driving methods mentioned in this paper. The resonator reaches resonant mode at 330 kHz by different driving methods.The relationship between resonant amplitude and driving signal amplitude is linear. The quality factor reaches over 150 by different driving methods. The results provide a theoretical reference for the efficient excitation of the piezoelectric resonator.
文摘The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.
文摘With the continuous evolution of electronic technology,field-programmable gate array(FPGA)has demonstrated significant advantages in the realm of signal acquisition and processing,and signal acquisition plays a pivotal role in the practical applications of laser gyros.By analysis of the output signals from a laser gyro and an accelerometer,this paper presents a circuit design for signal acquisition of the laser gyro based on domestic devices.The design incorporates a finite impulse response(FIR)filter to process the gyro signal and employs a small-volume,impact-resistant quartz flexible accelerometer for signal aquisition.Simulation results demonstrate that the errors in X,Y,and Z axes fall within acceptable ranges while meeting filtering requirements.The use of FPGA for signal acquisition and preprocessing enhances configuration flexibility,which provides an idea and method for optimizing performance and processing signals in laser gyro applications.
基金supported by the DOE-MMICS SEA-CROGS DE-SC0023191 and the AFOSR MURI FA9550-20-1-0358supported by the SMART Scholarship,which is funded by the USD/R&E(The Under Secretary of Defense-Research and Engineering),National Defense Education Program(NDEP)/BA-1,Basic Research.
文摘Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.
基金The National Natural Science Foundation of China (No.60974116)the Research Fund of Aeronautics Science (No. 20090869007)Specialized Research Fund for the Doctoral Program of Higher Education(No. 200802861063)
文摘In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for improving the accuracy of the drive phase in the gyroscope drive mode.Through the principle of bias signal generation,it can be concluded that the deviation of the drive phase is the main factor affecting the bias stability.To fulfill the purpose of precise drive phase control,a digital signal processing circuit based on the field-programmable gate array(FPGA) with the phase-lock closed-loop control method is described and a demodulation method for phase error suppression is given.Compared with the analog circuit,the bias drift is largely reduced in the new digital circuit and the bias stability is improved from 60 to 19 °/h.The new digital control method can greatly increase the drive phase accuracy,and thus improve the bias stability.
文摘移动终端通过小区搜索完成与网络的接入工作。为了更快地完成时分长期演进(time division long term evolution,TD-LTE)系统小区搜索过程,与传统数字信号处理(digital signal processing,DSP)串行模式对比,从速度和面积两方面综合考虑,提出一种基于现场可编程门阵列(field programmable gate array,FPGA)的多通道并行小区搜索架构。主要工作集中在小区搜索整体方案设计和FPGA硬件实现上,在算法上对整个小区搜索算法架构进行了改进,同时根据硬件需求,利用以时钟换取速度的思想对FPGA硬件实现架构进行了优化。采用多通道并行高速乘法器进行序列相关检测和动态门限配置的方法,大大缩短了TD-LTE小区搜索的处理时间。并以Altera的EP4SGX230KF40C2芯片作为硬件平台进行了Modelsim功能仿真、板级验证等工作。实验结果表明,该设计方案的处理速度和数据精度均满足TD-LTE系统测试要求,性能远优于传统的DSP架构模式,可以应用到实际工程中。