Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerati...Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerating interfaces decay.Herein,we propose for the first time a novel strategy to enhance the interfacial stabilities by insitu dynamic reconstruction of weakly solvated Zn2þduring the desolvation processes at heterointerfaces.Theoretical calculations indicate that,due to built-in electric field effects(BEFs),the plating/stripping mechanism shifts from[Zn(H_(2)O)_(6)]_(2)þto[Zn(H_(2)O)_(5)(SO_(4))^(2-)]_(2)þwithout additional electrolyte additives,reducing the solvation ability of H_(2)O,enhancing the competitive coordination of SO_(4)^(2-),essentially eliminating the undesirable side effects of anodes.Hence,symmetric cells can operate stably for 3000 h(51.7-times increase in cycle life),and the full cells can operate stably for 5000 cycles(51.5-times increase in cycle life).This study provides valuable insights into the critical design of weakly solvated Zn^(2+) þand desolvation processes at heterointerfaces.展开更多
The behavior of buoyancy-driven magnetohydrodynamic(MHD)nanofluid flows with temperature-sensitive viscosity plays a pivotal role in high-performance thermal systems such as electronics cooling,nuclear reactors,and me...The behavior of buoyancy-driven magnetohydrodynamic(MHD)nanofluid flows with temperature-sensitive viscosity plays a pivotal role in high-performance thermal systems such as electronics cooling,nuclear reactors,and metallurgical processes.This study focuses on the boundary layer flow of a Casson-based sodium alginate Fe3O4 nanofluid influenced by magnetic field-dependent viscosity and thermal radiation,as it interacts with a vertically stretching sheet under dissipative conditions.To manage the inherent nonlinearities,Lie group transformations are applied to reformulate the governing boundary layer equations into similarity forms.These reduced equations are then solved via the Spectral Quasi-Linearization Method(SQLM),ensuring high accuracy and computational efficiency.The analysis comprehensively explores the impact of key parameters-including mixed convection intensity,magnetic field strength,Casson fluid properties,temperature-dependent viscosity,thermal radiation,and viscous dissipation(Eckert number)-on flow characteristics and heat transfer rates.Findings reveal that increasing magnetic field-dependent viscosity diminishes both skin friction and thermal transport,while buoyancy effects enhance heat transfer but lower shear stress on the surface.This work provides critical insights into controlling heat and momentum transfer in Casson nanofluids,advancing the design of thermal management systems involving complex fluids under magnetic and buoyant forces.展开更多
A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surg...A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surge in research activity,attributable to the diverse functionalities and enhanced accessibility of advanced active materials.In this work,recent advances in gas sensors,specifically those utilizing Field Effect Transistors(FETs),are summarized,including device configurations,response characteristics,sensor materials,and application domains.In pursuing high-performance artificial olfactory systems,the evolution of FET gas sensors necessitates their synchronization with material advancements.These materials should have large surface areas to enhance gas adsorption,efficient conversion of gas input to detectable signals,and strong mechanical qualities.The exploration of gas-sensitive materials has covered diverse categories,such as organic semiconductor polymers,conductive organic compounds and polymers,metal oxides,metal-organic frameworks,and low-dimensional materials.The application of gas sensing technology holds significant promise in domains such as industrial safety,environmental monitoring,and medical diagnostics.This comprehensive review thoroughly examines recent progress,identifies prevailing technical challenges,and outlines prospects for gas detection technology utilizing field effect transistors.The primary aim is to provide a valuable reference for driving the development of the next generation of gas-sensitive monitoring and detection systems characterized by improved sensitivity,selectivity,and intelligence.展开更多
Rechargeable magnesium batteries(RMBs)are considered promising candidates for next-generation energy storage systems due to their high theoretical capacity.However,the non-uniform deposition/stripping behavior of Mg m...Rechargeable magnesium batteries(RMBs)are considered promising candidates for next-generation energy storage systems due to their high theoretical capacity.However,the non-uniform deposition/stripping behavior of Mg metal hinders the practical application of RMBs.This study demonstrates that the designed interfacial electric field effect,driven by a copper phthalocyanine(CuPc)conductive interlayer,enhances the kinetics and stability of the Mg anode.In situ electrochemical impedance spectroscopy coupled with distribution of relaxation times analysis reveals that the highly delocalized electron cloud network of CuPc establishes a low-energy-barrier electron transport pathway,significantly reducing charge transfer resistance.Electrochemical characterization and density functional theory calculations indicate that the interfacial electric field effect effectively improves interfacial Mg^(2+)diffusion by enhancing electron delocalization and reducing the Mg^(2+)migration energy barrier.Furthermore,finite element simulations substantiate that the interfacial electric field imparts uniform interfacial charge distribution and homogeneous Mg deposition during plating/stripping processes.Consequently,the symmetric cell with CuPc@Mg achieves an ultra-long lifetime(1,400h at 5mAcm^(−2))and a high Coulombic efficiency(99.3%).Furthermore,the CuPc@Mg||Mo6S8 cell achieves high capacity retention(92%).This work highlights the potential of metal phthalocyanines in stabilizing Mg anodes.展开更多
ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultravi...ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultraviolet (UV) sensors are fabricated based on the ZnO nanosheets. Due to the peculiar structure of nanosheet, the FET shows n-type enhanced mode behavior and high electrical performance, and its field-effect mobility and on/off cur- rent ratio can reach 256 cm2/(V.s) and ~10^8, respectively. Moreover, the response of UV sensors can also be remarkably improved to ~3 × 10^8. The results make the ZnO nanosheets be a good material for the applications in nanoelectronic and optoelectronic devices.展开更多
As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and l...As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.展开更多
The effect of the applied electric field on the conductive behavior of zirconia ceramics is studied by measuring its initial current-voltage curve at various temperatures. The results show that when the field strength...The effect of the applied electric field on the conductive behavior of zirconia ceramics is studied by measuring its initial current-voltage curve at various temperatures. The results show that when the field strength is higher than the threshold for flash-sintering, the curves exhibit a nonlinear behavior by having an additional current on top of the linear current according to Ohm's law. Analyzing its transport behavior reveals that the additional current density is due to the extra oxygen vacancies induced by the electric field. The formation rate of the extra vacancies and associated current was related to the field strength.展开更多
Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can...Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Duet al. for the H in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.展开更多
Two-dimensional(2D)layered materials provide a promising alternative solution for overcoming the scal-ing limits in conventional Si-based devices.However,practical applications of 2D materials are facing crucial bottl...Two-dimensional(2D)layered materials provide a promising alternative solution for overcoming the scal-ing limits in conventional Si-based devices.However,practical applications of 2D materials are facing crucial bottlenecks,particularly that arising from the instability under ambient condition.The studies of degradation mechanisms and protecting strategies for overcoming the ambient instability of 2D materials have attracted extensive research attentions,both experimentally and theoretically.This review attempts to provide an overview on the recent progress of the encapsulation strategies for 2D materials.The en-capsulation strategies of mechanical transfer,polymer capping,atomic layer deposition,in-situ oxidation,and surface functionalization are systematically discussed for improving the ambient stability of 2D mate-rials.In addition,the current advances in air-stable and high-performance 2D materials-based field effect transistors(FETs)and photodetectors assisted by the encapsulation strategies are outlined.Furthermore,the future directions of encapsulation techniques of 2D materials for FETs and photodetectors applications are suggested.展开更多
Magnetocaloric material is the key working substance for magnetic refrigerant technology,for which the low-field and low-temperature magnetocaloric effect(MCE)performance is of great importance for practical applicati...Magnetocaloric material is the key working substance for magnetic refrigerant technology,for which the low-field and low-temperature magnetocaloric effect(MCE)performance is of great importance for practical applications at low temperatures.Here,a giant low-field magnetocaloric effect in ferromagnetically ordered Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds was reported,and the magnetic structure was characterized based on low-temperature neutron powder diffraction.With increasing Tm content from 0 to 1,the Curie temperature of Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds decreases from 16.0 K to 3.6 K.For Er_(0.7)Tm_(0.3)Al_(2) compound,it showed the largest low-field magnetic entropy change(–SM)with the peak value of 17.2 and 25.7 J/(kg K)for 0–1 T and 0–2 T,respectively.The(–SM)max up to 17.2 J/(kg K)of Er0.7Tm0.3Al2 compound for 0–1 T is the largest among the intermetallic magnetocaloric materials ever reported at temperatures below 20 K.The peak value of adiabatic temperature change(Tad)max was determined as 4.13 K and 6.87 K for 0–1 T and 0–2 T,respectively.The characteristic of second-order magnetic transitions was confirmed on basis of Arrott plots,the quantitative criterion of exponent n,rescaled universal curves,and the mean-field theory criterion.The outstanding low-field MCE performance with low working temperatures indicates that Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds are promising candidates for magnetic cooling materials at liquid hydrogen and liquid helium temperatures.展开更多
Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of ...Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.展开更多
The investigation of two-dimensional(2D)materials has advanced into practical device applications,such as cascaded logic stages.However,incompatible electrical properties and inappropriate logic levels remain enormous...The investigation of two-dimensional(2D)materials has advanced into practical device applications,such as cascaded logic stages.However,incompatible electrical properties and inappropriate logic levels remain enormous challenges.In this work,a doping-free strategy is investigated by top gated(TG)MoS_(2) field-effect transistors(FETs)using various metal gates(Au,Cu,Ag,and Al).These metals with different work functions provide a convenient tuning knob for controlling threshold voltage(V_(th))for MoS_(2) FETs.For instance,the Al electrode can create an extra electron doping(n-doping)behavior in the MoS_(2) TG-FETs due to a dipole effect at the gate-dielectric interface.In this work,by achieving matched electrical properties for the load transistor and the driver transistor in an inverter circuit,we successfully demonstrate wafer-scale MoS_(2) inverter arrays with an optimized inverter switching threshold voltage(V_(M))of 1.5 V and a DC voltage gain of 27 at a supply voltage(V_(DD))of 3 V.This work offers a novel scheme for the fabrication of fully integrated multistage logic circuits based on wafer-scale MoS_(2) film.展开更多
The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is t...The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.展开更多
We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT p...We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.展开更多
We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then ...We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.展开更多
The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method. The oscillations and decay of the ...The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method. The oscillations and decay of the wave packet on the adiabats as a function of time are given, which can be compared with the femtosecond transition-state (FTS) spectroscopy. The photo-absorption spectra and the kinetic-energy distribution of the dissociation fragments, which can exhibit the vibration-level structure and the dispersion of the wave packet, respectively, are also obtained. The investigation shows a blue shift of the band center for the photo-absorption spectrum and multiple peaks in the kinetic-energy spectrum with increasing laser intensity, which can be attributed to external field effects. By analyzing the oscillations of the wave packet evolving on the upper adiabat, an approximate inversion scheme is devised to roughly deduce its shape.展开更多
The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the Aha...The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the AharonovBohm oscillation (ABO) are found in the two-electron ring, which are similar to those found in a one-electron ring. However, the period of ABO in a two-electron ring is reduced by half compared with that in a one-electron ring. Furthermore, during the variation of B, the persistent current of the ground state may undergo a sudden change in sign. This change is associated with a singlet-triplet transition and has no counterpart in one-electron rings. For a given E, there exists a threshold of energy. When the energy of the excited state exceeds the threshold, the localization would disappear and the ABO would recover. The value of the threshold is proportional to the magnitude of E. Once the threshold is exceeded, the persistent current is much stronger than the current of the ground state at E=0.展开更多
In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and ...In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.展开更多
Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic...Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
基金financially supported by the National Natural Science Foundation of China(51977097).
文摘Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces,and unstable H_(2)O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction(HER),further accelerating interfaces decay.Herein,we propose for the first time a novel strategy to enhance the interfacial stabilities by insitu dynamic reconstruction of weakly solvated Zn2þduring the desolvation processes at heterointerfaces.Theoretical calculations indicate that,due to built-in electric field effects(BEFs),the plating/stripping mechanism shifts from[Zn(H_(2)O)_(6)]_(2)þto[Zn(H_(2)O)_(5)(SO_(4))^(2-)]_(2)þwithout additional electrolyte additives,reducing the solvation ability of H_(2)O,enhancing the competitive coordination of SO_(4)^(2-),essentially eliminating the undesirable side effects of anodes.Hence,symmetric cells can operate stably for 3000 h(51.7-times increase in cycle life),and the full cells can operate stably for 5000 cycles(51.5-times increase in cycle life).This study provides valuable insights into the critical design of weakly solvated Zn^(2+) þand desolvation processes at heterointerfaces.
文摘The behavior of buoyancy-driven magnetohydrodynamic(MHD)nanofluid flows with temperature-sensitive viscosity plays a pivotal role in high-performance thermal systems such as electronics cooling,nuclear reactors,and metallurgical processes.This study focuses on the boundary layer flow of a Casson-based sodium alginate Fe3O4 nanofluid influenced by magnetic field-dependent viscosity and thermal radiation,as it interacts with a vertically stretching sheet under dissipative conditions.To manage the inherent nonlinearities,Lie group transformations are applied to reformulate the governing boundary layer equations into similarity forms.These reduced equations are then solved via the Spectral Quasi-Linearization Method(SQLM),ensuring high accuracy and computational efficiency.The analysis comprehensively explores the impact of key parameters-including mixed convection intensity,magnetic field strength,Casson fluid properties,temperature-dependent viscosity,thermal radiation,and viscous dissipation(Eckert number)-on flow characteristics and heat transfer rates.Findings reveal that increasing magnetic field-dependent viscosity diminishes both skin friction and thermal transport,while buoyancy effects enhance heat transfer but lower shear stress on the surface.This work provides critical insights into controlling heat and momentum transfer in Casson nanofluids,advancing the design of thermal management systems involving complex fluids under magnetic and buoyant forces.
基金supported by the National Key R&D Program of China(No.2023YFC3707201)the National Natural Science Foundation of China(No.52320105003)+2 种基金the Informatization Plan of Chinese Academy of Sciences(No.CAS-WX2023PY-0103)the Fundamental Research Funds for the Central Universities(No.E3ET1803)sponsored by the Alliance of International Science Organizations(ANSO)scholarship for young talents.
文摘A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surge in research activity,attributable to the diverse functionalities and enhanced accessibility of advanced active materials.In this work,recent advances in gas sensors,specifically those utilizing Field Effect Transistors(FETs),are summarized,including device configurations,response characteristics,sensor materials,and application domains.In pursuing high-performance artificial olfactory systems,the evolution of FET gas sensors necessitates their synchronization with material advancements.These materials should have large surface areas to enhance gas adsorption,efficient conversion of gas input to detectable signals,and strong mechanical qualities.The exploration of gas-sensitive materials has covered diverse categories,such as organic semiconductor polymers,conductive organic compounds and polymers,metal oxides,metal-organic frameworks,and low-dimensional materials.The application of gas sensing technology holds significant promise in domains such as industrial safety,environmental monitoring,and medical diagnostics.This comprehensive review thoroughly examines recent progress,identifies prevailing technical challenges,and outlines prospects for gas detection technology utilizing field effect transistors.The primary aim is to provide a valuable reference for driving the development of the next generation of gas-sensitive monitoring and detection systems characterized by improved sensitivity,selectivity,and intelligence.
基金financially supported by the National Natural Science Foundation of China(52274295)Hebei Province Science and Technology Research and Development Platform Special Innovation Capability Enhancement Plan Project(24464402D)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)The Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)2025 Hebei Provincial Post-graduate Student Innovation Ability Training Funding Project(CXZZBS2025202,CXZZSS2025157).
文摘Rechargeable magnesium batteries(RMBs)are considered promising candidates for next-generation energy storage systems due to their high theoretical capacity.However,the non-uniform deposition/stripping behavior of Mg metal hinders the practical application of RMBs.This study demonstrates that the designed interfacial electric field effect,driven by a copper phthalocyanine(CuPc)conductive interlayer,enhances the kinetics and stability of the Mg anode.In situ electrochemical impedance spectroscopy coupled with distribution of relaxation times analysis reveals that the highly delocalized electron cloud network of CuPc establishes a low-energy-barrier electron transport pathway,significantly reducing charge transfer resistance.Electrochemical characterization and density functional theory calculations indicate that the interfacial electric field effect effectively improves interfacial Mg^(2+)diffusion by enhancing electron delocalization and reducing the Mg^(2+)migration energy barrier.Furthermore,finite element simulations substantiate that the interfacial electric field imparts uniform interfacial charge distribution and homogeneous Mg deposition during plating/stripping processes.Consequently,the symmetric cell with CuPc@Mg achieves an ultra-long lifetime(1,400h at 5mAcm^(−2))and a high Coulombic efficiency(99.3%).Furthermore,the CuPc@Mg||Mo6S8 cell achieves high capacity retention(92%).This work highlights the potential of metal phthalocyanines in stabilizing Mg anodes.
文摘ZnO nanosheets with thickness of a few nanometers are prepared by vapor transport and condensation method, and their structure and optical properties are well characterized. Field effect transistor (FET) and ultraviolet (UV) sensors are fabricated based on the ZnO nanosheets. Due to the peculiar structure of nanosheet, the FET shows n-type enhanced mode behavior and high electrical performance, and its field-effect mobility and on/off cur- rent ratio can reach 256 cm2/(V.s) and ~10^8, respectively. Moreover, the response of UV sensors can also be remarkably improved to ~3 × 10^8. The results make the ZnO nanosheets be a good material for the applications in nanoelectronic and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Nos.61521064,61522408,61574169,6 1334007,61474136,61574166)the Ministry of Science andTechnology of China(Nos.2016YFA0201803,2016YFA0203800,2017YFB0405603)+2 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Nos.QYZDB-SSWJSC048,QYZDY-SSW-JSC001)the Beijing Municipal Science and Technology Project(No.Z171100002017011)the Opening Project of the Key Laboratory of Microelectronic Devices&Integration Technology,Institute of Microelectronics of Chinese Academy of Sciences
文摘As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
基金financially supported by National Natural Science Foundation of China(Grant Nos.51372202,51402237,51532003,51602264)State Key Laboratory of Traction Power(Grand No.2015TPL Z01)
文摘The effect of the applied electric field on the conductive behavior of zirconia ceramics is studied by measuring its initial current-voltage curve at various temperatures. The results show that when the field strength is higher than the threshold for flash-sintering, the curves exhibit a nonlinear behavior by having an additional current on top of the linear current according to Ohm's law. Analyzing its transport behavior reveals that the additional current density is due to the extra oxygen vacancies induced by the electric field. The formation rate of the extra vacancies and associated current was related to the field strength.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074104 and 10604045)the University Science and Technology Planning Program of Shandong Province of China (Grant No. J09LA02)
文摘Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Duet al. for the H in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.
基金supported by the National Natural Science Foundation of China (Nos. 21825103, 51902227 and 11574241)the Open Project of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, China (No. P2020-021)
文摘Two-dimensional(2D)layered materials provide a promising alternative solution for overcoming the scal-ing limits in conventional Si-based devices.However,practical applications of 2D materials are facing crucial bottlenecks,particularly that arising from the instability under ambient condition.The studies of degradation mechanisms and protecting strategies for overcoming the ambient instability of 2D materials have attracted extensive research attentions,both experimentally and theoretically.This review attempts to provide an overview on the recent progress of the encapsulation strategies for 2D materials.The en-capsulation strategies of mechanical transfer,polymer capping,atomic layer deposition,in-situ oxidation,and surface functionalization are systematically discussed for improving the ambient stability of 2D mate-rials.In addition,the current advances in air-stable and high-performance 2D materials-based field effect transistors(FETs)and photodetectors assisted by the encapsulation strategies are outlined.Furthermore,the future directions of encapsulation techniques of 2D materials for FETs and photodetectors applications are suggested.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3501202 and 2019YFB2005800)the Science Center of the National Science Foundation of China(No.52088101)+1 种基金the National Natural Science Foundation of China(Nos.51871019,52171170,52130103,51961145305,51971026,and 52171169)the Beijing Natural Science Foundation Key Program(Grant Nos.Z190007 and Z200007),and“111 Project”(No.B170003).
文摘Magnetocaloric material is the key working substance for magnetic refrigerant technology,for which the low-field and low-temperature magnetocaloric effect(MCE)performance is of great importance for practical applications at low temperatures.Here,a giant low-field magnetocaloric effect in ferromagnetically ordered Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds was reported,and the magnetic structure was characterized based on low-temperature neutron powder diffraction.With increasing Tm content from 0 to 1,the Curie temperature of Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds decreases from 16.0 K to 3.6 K.For Er_(0.7)Tm_(0.3)Al_(2) compound,it showed the largest low-field magnetic entropy change(–SM)with the peak value of 17.2 and 25.7 J/(kg K)for 0–1 T and 0–2 T,respectively.The(–SM)max up to 17.2 J/(kg K)of Er0.7Tm0.3Al2 compound for 0–1 T is the largest among the intermetallic magnetocaloric materials ever reported at temperatures below 20 K.The peak value of adiabatic temperature change(Tad)max was determined as 4.13 K and 6.87 K for 0–1 T and 0–2 T,respectively.The characteristic of second-order magnetic transitions was confirmed on basis of Arrott plots,the quantitative criterion of exponent n,rescaled universal curves,and the mean-field theory criterion.The outstanding low-field MCE performance with low working temperatures indicates that Er_(1-x)Tm_(x)Al_(2)(0≤x≤1)compounds are promising candidates for magnetic cooling materials at liquid hydrogen and liquid helium temperatures.
基金National Natural Science Foundation of China,Grant/Award Numbers:21871065,22071038Heilongjiang Touyan Team,Grant/Award Number:HITTY‐20190033Interdisciplinary Research Foundation of HIT,Grant/Award Number:IR2021205。
文摘Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.
基金supported by the National Key Research and Development Program (No.2016YFA0203900)Innovation Program of Shanghai Municipal Education Commission (No.2021–01–07–00–07-E00077)+1 种基金Shanghai Municipal Science and Technology Commission (No.21DZ1100900)National Natural Science Foundation of China (Nos.51802041,61904032,and 61874154)。
文摘The investigation of two-dimensional(2D)materials has advanced into practical device applications,such as cascaded logic stages.However,incompatible electrical properties and inappropriate logic levels remain enormous challenges.In this work,a doping-free strategy is investigated by top gated(TG)MoS_(2) field-effect transistors(FETs)using various metal gates(Au,Cu,Ag,and Al).These metals with different work functions provide a convenient tuning knob for controlling threshold voltage(V_(th))for MoS_(2) FETs.For instance,the Al electrode can create an extra electron doping(n-doping)behavior in the MoS_(2) TG-FETs due to a dipole effect at the gate-dielectric interface.In this work,by achieving matched electrical properties for the load transistor and the driver transistor in an inverter circuit,we successfully demonstrate wafer-scale MoS_(2) inverter arrays with an optimized inverter switching threshold voltage(V_(M))of 1.5 V and a DC voltage gain of 27 at a supply voltage(V_(DD))of 3 V.This work offers a novel scheme for the fabrication of fully integrated multistage logic circuits based on wafer-scale MoS_(2) film.
文摘The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.
文摘We use the carbon nanotube (CNT) as the material of the pH sensing layer of the separative structure for the extended gate H^+-ion sensitive field effect transistor (EGFET) device.The CNT paste was prepared with CNT powder,Ag powder,silicagel,the di-n-butyl phthalate and the toluene solvents by appropriate ratio,then immobilized on the silicon substrate to form the carbon nanotube sensing layer.We measured theⅠ_(DS)-Ⅴ_G curves of the carbon nanotube separative structure EGFET device in the different pH buffer solutions by the Keithley 236Ⅰ-Ⅴmeasurement system.According to the experimental results,we can obtain the pH sensitivities of the carbon nanotube separative structure EGFET device,which is 62.54mV/pH from pH1 to pH13.
文摘We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.
基金the International Cooperation Program for Excellent Lectures of 2008 by Shandong Provincial Education Department,Chinathe National Natural Science Foundation of China(Grant No.11074151)Fundao para a Ciência e a Tecnologia,Portugal
文摘The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method. The oscillations and decay of the wave packet on the adiabats as a function of time are given, which can be compared with the femtosecond transition-state (FTS) spectroscopy. The photo-absorption spectra and the kinetic-energy distribution of the dissociation fragments, which can exhibit the vibration-level structure and the dispersion of the wave packet, respectively, are also obtained. The investigation shows a blue shift of the band center for the photo-absorption spectrum and multiple peaks in the kinetic-energy spectrum with increasing laser intensity, which can be attributed to external field effects. By analyzing the oscillations of the wave packet evolving on the upper adiabat, an approximate inversion scheme is devised to roughly deduce its shape.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574163), the Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Collisions, Lanzhou, China.
文摘The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the AharonovBohm oscillation (ABO) are found in the two-electron ring, which are similar to those found in a one-electron ring. However, the period of ABO in a two-electron ring is reduced by half compared with that in a one-electron ring. Furthermore, during the variation of B, the persistent current of the ground state may undergo a sudden change in sign. This change is associated with a singlet-triplet transition and has no counterpart in one-electron rings. For a given E, there exists a threshold of energy. When the energy of the excited state exceeds the threshold, the localization would disappear and the ABO would recover. The value of the threshold is proportional to the magnitude of E. Once the threshold is exceeded, the persistent current is much stronger than the current of the ground state at E=0.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602241)the China Postdoctoral Science Foundation(Grant No.2016M592754)
文摘In this manuscript,the perovskite-based metal–oxide–semiconductor field effect transistors(MOSFETs) with phenylC61-butyric acid methylester(PCBM) layers are studied.The MOSFETs are fabricated on perovskites,and characterized by photoluminescence spectra(PL),x-ray diffraction(XRD),and x-ray photoelectron spectroscopy(XPS).With PCBM layers,the current–voltage hysteresis phenomenon is effetely inhibited,and both the transfer and output current values increase.The band energy diagrams are proposed,which indicate that the electrons are transferred into the PCBM layer,resulting in the increase of photocurrent.The electron mobility and hole mobility are extracted from the transfer curves,which are about one order of magnitude as large as those of PCBM deposited,which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites,and the effects of ionized impurity scattering on carrier transport become smaller.
基金supported by the National Natural Foundation of China
文摘Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.