Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic...Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.展开更多
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ...Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.展开更多
Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scal...Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.展开更多
Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple anal...Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.展开更多
Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the mach...Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery.展开更多
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal...Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.展开更多
Discussions regarding the functional transformation of agricultural utilization and the mechanisms that underlie these changes within the Three Gorges Reservoir Area(TGRA)reflect variati ons in the relati on ship betw...Discussions regarding the functional transformation of agricultural utilization and the mechanisms that underlie these changes within the Three Gorges Reservoir Area(TGRA)reflect variati ons in the relati on ship betwee n people and their environme nt in China's central and wester ns part,an area of mountains and reservoirs.A clear understa nding of these changes also provides the scientific basis for the development of multi-functional agriculture in typical mountainous areas.Five counties were selected for analysis in this study from the hinterland of the TGRA;we analyzed changes in farmland scaling and corresponding under?lying mechanisms by defining the concepts of“Scaling Farmland”(SF)and by using the software packages ArcGIS10.2,SPSS,and Geographical Detectors.The results of this analysis show that sources of increased SF have mainly comprised cultivated and shrub land.In deed,with the excepti on of some alpine off-season vegetables,SF growth has mainly occurred in low altitude areas and in places where the slope is less than 30°.We also show that spatial changes in various SF types have also been substantially different,but in all cases are closely related to road and township administrative centers.Natural factors at the patch level,including elevation and slope,have contributed significantly to SF,while at the township level,underlying socioeconomic and humanistic factors have tended to include road traffic and agricultural population density.In contrast,at the region al level,underlying driving forces within each have tended to be more significant than overall study area scale.We show that while changes in,and the development of,SF have been driven by numerous factors,agri?cultural policies have always been amongst the most important.The results clearly elucidate general land use transformation patter ns within the mountain regi ons of western China.展开更多
The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduce...The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduces significant vulnerabilities,including fraud,money laundering,and market manipulation.Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data.Graph Neural Networks(GNNs),capable of modeling intricate interdependencies among entities,have emerged as a powerful framework for detecting subtle and sophisticated anomalies.However,the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability,performance,and interpretability.This paper presents a comprehensive survey of GNN-based approaches for anomaly detection in FinTech,with an emphasis on the synergistic role of feature selection.We examine the theoretical foundations of GNNs,review state-of-the-art feature selection techniques,analyze their integration with GNNs,and categorize prevalent anomaly types in FinTech applications.In addition,we discuss practical implementation challenges,highlight representative case studies,and propose future research directions to advance the field of graph-based anomaly detection in financial systems.展开更多
In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and dis...In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and distinguishable features in comparison to existing methods based on wavelet transformation. In this paper, we investigated performance of texture-based features in comparison to wavelet-based features with commonly used classifiers for the classification of Alzheimer’s disease based on T2-weighted MRI brain image. The performance is evaluated in terms of sensitivity, specificity, accuracy, training and testing time. Experiments are performed on publicly available medical brain images. Experimental results show that the performance with First and Second Order Statistics based features is significantly better in comparison to existing methods based on wavelet transformation in terms of all performance measures for all classifiers.展开更多
The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models ...The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models have recently offered high-performance and reliable systems.However,their performance can still be further improved using the capabilities of soft biometrics,a research question yet to be investigated.This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits.It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving new,more perceptive,comparative soft biometrics for feature-level fusion with hard biometric deep features.It conducts several identification and verification experiments for performance evaluation,analysis,and comparison while varying ear image datasets,hard biometric deep-feature extractors,soft biometric augmentation methods,and classifiers used.The experimental work yields promising results,reaching up to 99.94%accuracy and up to 14%improvement using the AMI and AMIC datasets,along with their corresponding soft biometric label data.The results confirm the proposed augmented approaches’superiority over their standard counterparts and emphasize the robustness of the new ear comparative soft biometrics over their categorical peers.展开更多
The crystal structure and the dynamic feature of molecular structure in solution for 1,8-dibenzoyl-2,7-dimethoxynaph-thalene are revealed by X-ray crystallographic analysis and VT-NMR measurements. In crystal, the mol...The crystal structure and the dynamic feature of molecular structure in solution for 1,8-dibenzoyl-2,7-dimethoxynaph-thalene are revealed by X-ray crystallographic analysis and VT-NMR measurements. In crystal, the molecule of the title compound is located on a twofold rotation axis. The two benzoyl groups are situated in an opposite direction. The dihedral angle between the mean planes of the phenyl ring and the naphthalene ring system is 80.25(6). The benzene ring and carbonyl moiety in each benzoyl group are almost coplanar. The molecular packing is stabilized by weak C–H…O hydrogen bonds and aπ-πstacking interaction between the benzene rings [centroid-centroid and interplanar distances of 3.6383(10) and 3.294 , respectively]. In solution, the temperature-dependent rotation behavior of the C–C bond between the benzene ring and the ketonic carbonyl group has been observed by1H VT-NMR measurements. Furthermore, comparison of the C–C bond rotation behavior between the benzene ring and the carbonyl group with 1-ben-zoyl-2,7-dimethoxynaphthalene has clarified that the C–C bond between the ketonic carbonyl group and the naphthalene ring rotates slower than the 1,8-dibenzoylated homologue.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
In this paper we will discuss novel algorithms to develop the brain-computer interface (BCI) system in speller application based on single-trial classification of electroencephalogram (EEG) signal. The idea is to empl...In this paper we will discuss novel algorithms to develop the brain-computer interface (BCI) system in speller application based on single-trial classification of electroencephalogram (EEG) signal. The idea is to employ proper methods for reducing the number of channels and optimizing feature vectors. Removal unnecessary channels and reducing feature dimension result in cost decrement, time saving and improve the BCI implementation eventually. Optimal channels will be gotten after two stages sifting. In the first stage, the channels reduced up to 30% based on channels of the important event related potential (ERP) components and in the next stage, optimal channels were extracted by backward forward selection (BFS) algorithm. Also we will show that suitable single-trial analysis requires applying proper feature vector that was constructed by recognizing important ERP components, so as to propose an algorithm to distinguish less important features in feature vectors. F-Score criteria used to recognize effective features which created more discrimination between different classes and feature vectors were reconstructed based on effective features. Our algorithm has tested on dataset II of BCI competition III. The results show that we achieve accuracy up to 31% in single-trial, which is better than the performance of winner who is in this competition (about 25.5%). Also we use simple classifier and few channels to compute output performances while more complicated classifier and all channels are used by them.展开更多
This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex ...This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex sys-tem, we propose a mixture of local feature models to overcome these weaknesses. The basic idea is to split the entire input space into operating domains, and a recently developed feature-based model combination method is applied to build local models for each region. To realize this idea, three steps are required, which include clustering, local modeling and model combination, governed by a single objective function. An adaptive fuzzy parametric clustering algorithm is proposed to divide the whole input space into operating regimes, local feature models are created in each individual region by applying a recently developed fea-ture-based model combination method, and finally they are combined into a single mixture model. Corre-spondingly, a three-stage procedure is designed to optimize the complete objective function, which is actu-ally a hybrid Genetic Algorithm (GA). Our simulation results show that the adaptive fuzzy mixture of local feature models turns out to be superior to global models.展开更多
Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carc...Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carcinoma(SCC).Existing vision transformers(ViTs)can implement representation learning for SCC grading,however,they all adopt the class-patch token fuzzy mapping for pattern prediction probability or window down-sampling to enhance the representation to contextual information.展开更多
Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained ...Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.展开更多
Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstl...Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstly,a multiplexed aggregated feature extraction network is proposed using residual bottleneck block(RES-Bottleneck)and middle partial-convolution(MP-Conv)to capture multi-scale spatial features and enhance focus on disease features for better differentiation between disease targets and background information.Secondly,a lightweight feature fusion network is designed using scale-fuse concatenation(SF-Cat)and triple-scale sequence feature fusion(TSSF)module to merge multi-scale feature maps comprehensively.Depthwise convolution(DWConv)and GhostNet lighten the network,while the cross stage partial bottleneck with 3 convolutions ghost-normalization attention module(C3-GN)reduces missed detections by suppressing irrelevant background information.Finally,soft non-maximum suppression(Soft-NMS)is used in the post-processing stage to improve the problem of misdetection of dense disease sites.The results show that the MSL-Net improves mean average precision at intersection over union of 0.5(mAP@0.5)by 2.0%over the baseline you only look once version 5s(YOLOv5s)and reduces parameters by 44%,reducing computation by 27%,outperforming other state-of-the-art(SOTA)models overall.This method also shows excellent performance compared to the latest research.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-01264).
文摘Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
文摘Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.
基金the National Natural Science Foundation of China(No.71401016)the Shaanxi Provincial Natural Science Foundation of China(No.2019JM-495)the Fundamental Research Funds for Central Universities of Chang'an University(Nos.300102228110 and 300102228402)。
文摘Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.
文摘Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.
文摘Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery.
文摘Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.
基金Key Basic Science and Cutting Edge Technology Research Plan of Chongqing,No.cstc2015jcyjBX0128National Natural Science Foundation of China,No.41261045Chongqing Normal University Graduate Student Research Innovation Project,No.YKC18033.
文摘Discussions regarding the functional transformation of agricultural utilization and the mechanisms that underlie these changes within the Three Gorges Reservoir Area(TGRA)reflect variati ons in the relati on ship betwee n people and their environme nt in China's central and wester ns part,an area of mountains and reservoirs.A clear understa nding of these changes also provides the scientific basis for the development of multi-functional agriculture in typical mountainous areas.Five counties were selected for analysis in this study from the hinterland of the TGRA;we analyzed changes in farmland scaling and corresponding under?lying mechanisms by defining the concepts of“Scaling Farmland”(SF)and by using the software packages ArcGIS10.2,SPSS,and Geographical Detectors.The results of this analysis show that sources of increased SF have mainly comprised cultivated and shrub land.In deed,with the excepti on of some alpine off-season vegetables,SF growth has mainly occurred in low altitude areas and in places where the slope is less than 30°.We also show that spatial changes in various SF types have also been substantially different,but in all cases are closely related to road and township administrative centers.Natural factors at the patch level,including elevation and slope,have contributed significantly to SF,while at the township level,underlying socioeconomic and humanistic factors have tended to include road traffic and agricultural population density.In contrast,at the region al level,underlying driving forces within each have tended to be more significant than overall study area scale.We show that while changes in,and the development of,SF have been driven by numerous factors,agri?cultural policies have always been amongst the most important.The results clearly elucidate general land use transformation patter ns within the mountain regi ons of western China.
基金supported by Ho Chi Minh City Open University,Vietnam under grant number E2024.02.1CD and Suan Sunandha Rajabhat University,Thailand.
文摘The Financial Technology(FinTech)sector has witnessed rapid growth,resulting in increasingly complex and high-volume digital transactions.Although this expansion improves efficiency and accessibility,it also introduces significant vulnerabilities,including fraud,money laundering,and market manipulation.Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data.Graph Neural Networks(GNNs),capable of modeling intricate interdependencies among entities,have emerged as a powerful framework for detecting subtle and sophisticated anomalies.However,the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability,performance,and interpretability.This paper presents a comprehensive survey of GNN-based approaches for anomaly detection in FinTech,with an emphasis on the synergistic role of feature selection.We examine the theoretical foundations of GNNs,review state-of-the-art feature selection techniques,analyze their integration with GNNs,and categorize prevalent anomaly types in FinTech applications.In addition,we discuss practical implementation challenges,highlight representative case studies,and propose future research directions to advance the field of graph-based anomaly detection in financial systems.
文摘In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and distinguishable features in comparison to existing methods based on wavelet transformation. In this paper, we investigated performance of texture-based features in comparison to wavelet-based features with commonly used classifiers for the classification of Alzheimer’s disease based on T2-weighted MRI brain image. The performance is evaluated in terms of sensitivity, specificity, accuracy, training and testing time. Experiments are performed on publicly available medical brain images. Experimental results show that the performance with First and Second Order Statistics based features is significantly better in comparison to existing methods based on wavelet transformation in terms of all performance measures for all classifiers.
基金funded by WAQF at King Abdulaziz University,Jeddah,Saudi Arabia.
文摘The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models have recently offered high-performance and reliable systems.However,their performance can still be further improved using the capabilities of soft biometrics,a research question yet to be investigated.This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits.It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving new,more perceptive,comparative soft biometrics for feature-level fusion with hard biometric deep features.It conducts several identification and verification experiments for performance evaluation,analysis,and comparison while varying ear image datasets,hard biometric deep-feature extractors,soft biometric augmentation methods,and classifiers used.The experimental work yields promising results,reaching up to 99.94%accuracy and up to 14%improvement using the AMI and AMIC datasets,along with their corresponding soft biometric label data.The results confirm the proposed augmented approaches’superiority over their standard counterparts and emphasize the robustness of the new ear comparative soft biometrics over their categorical peers.
文摘The crystal structure and the dynamic feature of molecular structure in solution for 1,8-dibenzoyl-2,7-dimethoxynaph-thalene are revealed by X-ray crystallographic analysis and VT-NMR measurements. In crystal, the molecule of the title compound is located on a twofold rotation axis. The two benzoyl groups are situated in an opposite direction. The dihedral angle between the mean planes of the phenyl ring and the naphthalene ring system is 80.25(6). The benzene ring and carbonyl moiety in each benzoyl group are almost coplanar. The molecular packing is stabilized by weak C–H…O hydrogen bonds and aπ-πstacking interaction between the benzene rings [centroid-centroid and interplanar distances of 3.6383(10) and 3.294 , respectively]. In solution, the temperature-dependent rotation behavior of the C–C bond between the benzene ring and the ketonic carbonyl group has been observed by1H VT-NMR measurements. Furthermore, comparison of the C–C bond rotation behavior between the benzene ring and the carbonyl group with 1-ben-zoyl-2,7-dimethoxynaphthalene has clarified that the C–C bond between the ketonic carbonyl group and the naphthalene ring rotates slower than the 1,8-dibenzoylated homologue.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
文摘In this paper we will discuss novel algorithms to develop the brain-computer interface (BCI) system in speller application based on single-trial classification of electroencephalogram (EEG) signal. The idea is to employ proper methods for reducing the number of channels and optimizing feature vectors. Removal unnecessary channels and reducing feature dimension result in cost decrement, time saving and improve the BCI implementation eventually. Optimal channels will be gotten after two stages sifting. In the first stage, the channels reduced up to 30% based on channels of the important event related potential (ERP) components and in the next stage, optimal channels were extracted by backward forward selection (BFS) algorithm. Also we will show that suitable single-trial analysis requires applying proper feature vector that was constructed by recognizing important ERP components, so as to propose an algorithm to distinguish less important features in feature vectors. F-Score criteria used to recognize effective features which created more discrimination between different classes and feature vectors were reconstructed based on effective features. Our algorithm has tested on dataset II of BCI competition III. The results show that we achieve accuracy up to 31% in single-trial, which is better than the performance of winner who is in this competition (about 25.5%). Also we use simple classifier and few channels to compute output performances while more complicated classifier and all channels are used by them.
文摘This paper addresses an important issue in model combination, that is, model locality. Since usually a global linear model is unable to reflect nonlinearity and to characterize local features, especially in a complex sys-tem, we propose a mixture of local feature models to overcome these weaknesses. The basic idea is to split the entire input space into operating domains, and a recently developed feature-based model combination method is applied to build local models for each region. To realize this idea, three steps are required, which include clustering, local modeling and model combination, governed by a single objective function. An adaptive fuzzy parametric clustering algorithm is proposed to divide the whole input space into operating regimes, local feature models are created in each individual region by applying a recently developed fea-ture-based model combination method, and finally they are combined into a single mixture model. Corre-spondingly, a three-stage procedure is designed to optimize the complete objective function, which is actu-ally a hybrid Genetic Algorithm (GA). Our simulation results show that the adaptive fuzzy mixture of local feature models turns out to be superior to global models.
基金supported by the National Natural Science Foundation of China(62272078)the Chongqing Natural Science Foundation(CSTB2023NSCQ-LZX0069).
文摘Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carcinoma(SCC).Existing vision transformers(ViTs)can implement representation learning for SCC grading,however,they all adopt the class-patch token fuzzy mapping for pattern prediction probability or window down-sampling to enhance the representation to contextual information.
文摘Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.
文摘Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstly,a multiplexed aggregated feature extraction network is proposed using residual bottleneck block(RES-Bottleneck)and middle partial-convolution(MP-Conv)to capture multi-scale spatial features and enhance focus on disease features for better differentiation between disease targets and background information.Secondly,a lightweight feature fusion network is designed using scale-fuse concatenation(SF-Cat)and triple-scale sequence feature fusion(TSSF)module to merge multi-scale feature maps comprehensively.Depthwise convolution(DWConv)and GhostNet lighten the network,while the cross stage partial bottleneck with 3 convolutions ghost-normalization attention module(C3-GN)reduces missed detections by suppressing irrelevant background information.Finally,soft non-maximum suppression(Soft-NMS)is used in the post-processing stage to improve the problem of misdetection of dense disease sites.The results show that the MSL-Net improves mean average precision at intersection over union of 0.5(mAP@0.5)by 2.0%over the baseline you only look once version 5s(YOLOv5s)and reduces parameters by 44%,reducing computation by 27%,outperforming other state-of-the-art(SOTA)models overall.This method also shows excellent performance compared to the latest research.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.