The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e...The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—cove...This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—covering momentum,volatility,volume,and trend-related technical indicators—are subjected to three distinct feature selection approaches.Specifically,mutual information(MI),recursive feature elimination(RFE),and random forest importance(RFI).By extracting an optimal set of 20 predictors,the proposed framework aims to mitigate redundancy and overfitting while enhancing interpretability.These feature subsets are integrated into support vector regression(SVR),Huber regressors,and k-nearest neighbors(KNN)models to forecast the prices of three leading cryptocurrencies—Bitcoin(BTC/USDT),Ethereum(ETH/USDT),and Binance Coin(BNB/USDT)—across horizons ranging from 1 to 20 days.Model evaluation employs the coefficient of determination(R2)and the root mean squared logarithmic error(RMSLE),alongside a walk-forward validation scheme to approximate real-world trading contexts.Empirical results indicate that incorporating momentum and volatility measures substantially improves predictive accuracy,with particularly pronounced effects observed at longer forecast windows.Moreover,indicators related to volume and trend provide incremental benefits in select market conditions.Notably,an 80%–85% reduction in the original feature set frequently maintains or enhances model performance relative to the complete indicator set.These findings highlight the critical role of targeted feature selection in addressing high-dimensional financial data challenges while preserving model robustness.This research advances the field of cryptocurrency forecasting by offering a rigorous comparison of feature selection methods and their effects on multiple digital assets and prediction horizons.The outcomes highlight the importance of dimension-reduction strategies in developing more efficient and resilient forecasting algorithms.Future efforts should incorporate high-frequency data and explore alternative selection techniques to further refine predictive accuracy in this highly volatile domain.展开更多
Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embed...Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embedded methods,have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data.Deep learning-based FS methods,particularly Convolutional Neural Networks(CNNs)and autoencoders,have demonstrated superior performance but lack interpretability.Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution,offering improved accuracy and explainability.Furthermore,integratingmulti-modal imaging data(e.g.,MagneticResonance Imaging(MRI),ComputedTomography(CT),Positron Emission Tomography(PET),and Ultrasound(US))poses additional challenges in FS,necessitating advanced feature fusion strategies.Multi-modal feature fusion combines information fromdifferent imagingmodalities to improve diagnostic accuracy.Recently,quantum computing has gained attention as a revolutionary approach for FS,providing the potential to handle high-dimensional medical data more efficiently.This systematic literature review comprehensively examines classical,Deep Learning(DL),hybrid,and quantum-based FS techniques inmedical imaging.Key outcomes include a structured taxonomy of FS methods,a critical evaluation of their performance across modalities,and identification of core challenges such as computational burden,interpretability,and ethical considerations.Future research directions—such as explainable AI(XAI),federated learning,and quantum-enhanced FS—are also emphasized to bridge the current gaps.This review provides actionable insights for developing scalable,interpretable,and clinically applicable FS methods in the evolving landscape of medical imaging.展开更多
Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Effi...Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Efficient feature selection methods are critical for improving diagnostic accuracy,reducing computational costs,and enhancing the interpretability of predictive models.Particle Swarm Optimization(PSO),a widely used metaheuristic inspired by swarm intelligence,has shown considerable promise in feature selection tasks.However,conventional PSO often suffers from premature convergence and limited exploration capabilities,particularly in high-dimensional spaces.To overcome these limitations,this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-tion and a Crossover Operator(OrPSOC).Orthogonal Initialization ensures a diverse and uniformly distributed initial particle population,substantially improving the algorithm’s exploration capability.The Crossover Operator,inspired by genetic algorithms,introduces additional diversity during the search process,effectively mitigating premature convergence and enhancing global search performance.The effectiveness of OrPSOC was rigorously evaluated on three benchmark medical datasets—Colon,Leukemia,and Prostate Tumor.Comparative analyses were conducted against traditional filter-based methods,including Fast Clustering-Based Feature Selection Technique(Fast-C),Minimum Redundancy Maximum Relevance(MinRedMaxRel),and Five-Way Joint Mutual Information(FJMI),as well as prominent metaheuristic algorithms such as standard PSO,Ant Colony Optimization(ACO),Comprehensive Learning Gravitational Search Algorithm(CLGSA),and Fuzzy-Based CLGSA(FCLGSA).Experimental results demonstrated that OrPSOC consistently outperformed these existing methods in terms of classification accuracy,computational efficiency,and result stability,achieving significant improvements even with fewer selected features.Additionally,a sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on model performance.These findings highlight the superiority and robustness of the proposed OrPSOC approach for feature selection in medical diagnostic applications and underscore its potential for broader adoption in various high-dimensional,data-driven fields.展开更多
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr...Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.展开更多
Advanced Persistent Threats(APTs)represent one of the most complex and dangerous categories of cyber-attacks characterised by their stealthy behaviour,long-term persistence,and ability to bypass traditional detection ...Advanced Persistent Threats(APTs)represent one of the most complex and dangerous categories of cyber-attacks characterised by their stealthy behaviour,long-term persistence,and ability to bypass traditional detection systems.The complexity of real-world network data poses significant challenges in detection.Machine learning models have shown promise in detecting APTs;however,their performance often suffers when trained on large datasets with redundant or irrelevant features.This study presents a novel,hybrid feature selection method designed to improve APT detection by reducing dimensionality while preserving the informative characteristics of the data.It combines Mutual Information(MI),Symmetric Uncertainty(SU)and Minimum Redundancy Maximum Relevance(mRMR)to enhance feature selection.MI and SU assess feature relevance,while mRMR maximises relevance and minimises redundancy,ensuring that the most impactful features are prioritised.This method addresses redundancy among selected features,improving the overall efficiency and effectiveness of the detection model.Experiments on a real-world APT datasets were conducted to evaluate the proposed method.Multiple classifiers including,Random Forest,Support Vector Machine(SVM),Gradient Boosting,and Neural Networks were used to assess classification performance.The results demonstrate that the proposed feature selection method significantly enhances detection accuracy compared to baseline models trained on the full feature set.The Random Forest algorithm achieved the highest performance,with near-perfect accuracy,precision,recall,and F1 scores(99.97%).The proposed adaptive thresholding algorithm within the selection method allows each classifier to benefit from a reduced and optimised feature space,resulting in improved training and predictive performance.This research offers a scalable and classifier-agnostic solution for dimensionality reduction in cybersecurity applications.展开更多
This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction m...This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction monitoring systems.The framework is structured into three core layers:(1)feature selection using Recursive Feature Elimination(RFE),Principal Component Analysis(PCA),and Mutual Information(MI)to reduce dimensionality and enhance input relevance;(2)anomaly detection through unsupervised clustering using K-Means,Density-Based Spatial Clustering(DBSCAN),and Hierarchical Clustering to flag suspicious patterns in unlabeled data;and(3)final classification using a voting-based hybrid ensemble of Support Vector Machine(SVM),Random Forest(RF),and Gradient Boosting Classifier(GBC).The experimental evaluation is conducted on a synthetically generated dataset comprising one million financial transactions,with 5% labelled as fraudulent,simulating realistic fraud rates and behavioural features,including transaction time,origin,amount,and geo-location.The proposed model demonstrated a significant improvement over baseline classifiers,achieving an accuracy of 99%,a precision of 99%,a recall of 97%,and an F1-score of 99%.Compared to individual models,it yielded a 9% gain in overall detection accuracy.It reduced the false positive rate to below 3.5%,thereby minimising the operational costs associated with manually reviewing false alerts.The model’s interpretability is enhanced by the integration of Shapley Additive Explanations(SHAP)values for feature importance,supporting transparency and regulatory auditability.These results affirm the practical relevance of the proposed system for deployment in real-time fraud detection scenarios such as credit card transactions,mobile banking,and cross-border payments.The study also highlights future directions,including the deployment of lightweight models and the integration of multimodal data for scalable fraud analytics.展开更多
Soil moisture is a key parameter in the exchange of energy and water between the land surface and the atmosphere.This parameter plays an important role in the dynamics of permafrost on the Qinghai-Xizang Plateau,China...Soil moisture is a key parameter in the exchange of energy and water between the land surface and the atmosphere.This parameter plays an important role in the dynamics of permafrost on the Qinghai-Xizang Plateau,China,as well as in the related ecological and hydrological processes.However,the region's complex terrain and extreme climatic conditions result in low-accuracy soil moisture estimations using traditional remote sensing techniques.Thus,this study considered parameters of the backscatter coefficient of Sentinel-1A ground range detected(GRD)data,the polarization decomposition parameters of Sentinel-1A single-look complex(SLC)data,the normalized difference vegetation index(NDVI)based on Sentinel-2B data,and the topographic factors based on digital elevation model(DEM)data.By combining these parameters with a machine learning model,we established a feature selection rule.A cumulative importance threshold was derived for feature variables,and those variables that failed to meet the threshold were eliminated based on variations in the coefficient of determination(R^(2))and the unbiased root mean square error(ubRMSE).The eight most influential variables were selected and combined with the CatBoost model for soil moisture inversion,and the SHapley Additive exPlanations(SHAP)method was used to analyze the importance of these variables.The results demonstrated that the optimized model significantly improved the accuracy of soil moisture inversion.Compared to the unfiltered model,the optimal feature combination led to a 0.09 increase in R^(2)and a 0.7%reduction in ubRMSE.Ultimately,the optimized model achieved a R²of 0.87 and an ubRMSE of 5.6%.Analysis revealed that soil particle size had significant impact on soil water retention capacity.The impact of vegetation on the estimated soil moisture on the Qinghai-Xizang Plateau was considerable,demonstrating a significant positive correlation.Moreover,the microtopographical features of hummocks interfered with soil moisture estimation,indicating that such terrain effects warrant increased attention in future studies within the permafrost regions.The developed method not only enhances the accuracy of soil moisture retrieval in the complex terrain of the Qinghai-Xizang Plateau,but also exhibits high computational efficiency(with a relative time reduction of 18.5%),striking an excellent balance between accuracy and efficiency.This approach provides a robust framework for efficient soil moisture monitoring in remote areas with limited ground data,offering critical insights for ecological conservation,water resource management,and climate change adaptation on the Qinghai-Xizang Plateau.展开更多
Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certai...Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certain models,they do not invariably guarantee the extraction of the most critical or impactful features.Prior literature underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification of appropriate features.However,the challenge of discerning the most relevant and influential features persists,particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly salient in modern artificial intelligence(AI)applications.In response,this study introduces an innovative,automated statistical method termed Farea Similarity for Feature Selection(FSFS).The FSFS approach computes a similarity metric for each feature by benchmarking it against the record-wise mean,thereby finding feature dependencies and mitigating the influence of outliers that could potentially distort evaluation outcomes.Features are subsequently ranked according to their similarity scores,with the threshold established at the average similarity score.Notably,lower FSFS values indicate higher similarity and stronger data correlations,whereas higher values suggest lower similarity.The FSFS method is designed not only to yield reliable evaluation metrics but also to reduce data complexity without compromising model performance.Comparative analyses were performed against several established techniques,including Chi-squared(CS),Correlation Coefficient(CC),Genetic Algorithm(GA),Exhaustive Approach,Greedy Stepwise Approach,Gain Ratio,and Filtered Subset Eval,using a variety of datasets such as the Experimental Dataset,Breast Cancer Wisconsin(Original),KDD CUP 1999,NSL-KDD,UNSW-NB15,and Edge-IIoT.In the absence of the FSFS method,the highest classifier accuracies observed were 60.00%,95.13%,97.02%,98.17%,95.86%,and 94.62%for the respective datasets.When the FSFS technique was integrated with data normalization,encoding,balancing,and feature importance selection processes,accuracies improved to 100.00%,97.81%,98.63%,98.94%,94.27%,and 98.46%,respectively.The FSFS method,with a computational complexity of O(fn log n),demonstrates robust scalability and is well-suited for datasets of large size,ensuring efficient processing even when the number of features is substantial.By automatically eliminating outliers and redundant data,FSFS reduces computational overhead,resulting in faster training and improved model performance.Overall,the FSFS framework not only optimizes performance but also enhances the interpretability and explainability of data-driven models,thereby facilitating more trustworthy decision-making in AI applications.展开更多
Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software ...Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models.展开更多
The complex compositions of high-entropy alloys(HEAs)enable a variety of phase structures like FCC single phase,BCC single phase,or duplex FCC+BCC phase.Accurate and efficient prediction of phase structure is crucial ...The complex compositions of high-entropy alloys(HEAs)enable a variety of phase structures like FCC single phase,BCC single phase,or duplex FCC+BCC phase.Accurate and efficient prediction of phase structure is crucial for accelerating the discovery of new components and designing HEAs with desired phase structure.In this work,five machine learning strategies were utilized to predict the phase structures of HEAs with a dataset of 296.Specifically,a two-step feature selection strategy was proposed,enabling pronounced improvement in the computational efficiency from 2047 to 12 iterations for each model while ensuring fewer input features and higher prediction accuracy.Compared with traditional valence electron concentration criterion,the prediction accuracy of collected dataset was highly improved from 0.79 to 0.98 for random forest.Furthermore,HEAs with compositions of Al_(x)CoCu_(6)Ni_(6)Fe_(6)(x=1,3,6)were developed to validate the prediction results of machine learning models,and the mechanical properties as well as corrosion resistance were investigated.It is found that the higher Al content enhances the yield strength but deteriorates corrosion resistance.The present two-step feature selection strategy provides an alternative method that is feasible for predicting the phase structure of HEAs with high efficiency and accuracy.展开更多
Selecting proper descriptors(also known feature selection,FS)is key in the process of establishing mechanical properties prediction model of hot-rolled microalloyed steels by using machine learning(ML)algorithm.FS met...Selecting proper descriptors(also known feature selection,FS)is key in the process of establishing mechanical properties prediction model of hot-rolled microalloyed steels by using machine learning(ML)algorithm.FS methods based on data-driving can reduce the redundancy of data features and improve the prediction accuracy of mechanical properties.Based on the collected data of hot-rolled microalloyed steels,the association rules are used to mine the correlation information between the data.High-quality feature subsets are selected by the proposed FS method(FS method based on genetic algorithm embedding,GAMIC).Compared with the common FS method,it is shown on dataset that GAMIC selects feature subsets more appropriately.Six different ML algorithms are trained and tested for mechanical properties prediction.The result shows that the root-mean-square error of yield strength,tensile strength and elongation based on limit gradient enhancement(XGBoost)algorithm is 21.95 MPa,20.85 MPa and 1.96%,the correlation coefficient(R^(2))is 0.969,0.968 and 0.830,and the mean absolute error is 16.84 MPa,15.83 MPa and 1.48%,respectively,showing the best prediction performance.Finally,SHapley Additive exPlanation is used to further explore the influence of feature variables on mechanical properties.GAMIC feature selection method proposed is universal,which provides a basis for the development of high-precision mechanical property prediction model.展开更多
Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of t...Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems.展开更多
Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis...Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis of this malignancy;however,manual observation of the blood smear is very time-consuming and requires labor and expertise.Transfer learning in deep neural networks is of growing importance to intricate medical tasks such as medical imaging.Our work proposes an application of a novel ensemble architecture that puts together Vision Transformer and EfficientNetV2.This approach fuses deep and spatial features to optimize discriminative power by selecting features accurately,reducing redundancy,and promoting sparsity.Besides the architecture of the ensemble,the advanced feature selection is performed by the Frog-Snake Prey-Predation Relationship Optimization(FSRO)algorithm.FSRO prioritizes the most relevant features while dynamically reducing redundant and noisy data,hence improving the efficiency and accuracy of the classification model.We have compared our method for feature selection against state-of-the-art techniques and recorded an accuracy of 94.88%,a recall of 94.38%,a precision of 96.18%,and an F1-score of 95.63%.These figures are therefore better than the classical methods for deep learning.Though our dataset,collected from four different hospitals,is non-standard and heterogeneous,making the analysis more challenging,although computationally expensive,our approach proves diagnostically superior in cancer detection.Source codes and datasets are available on GitHub.展开更多
In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and ...In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and machine learning(ML)-based detection systems struggle to detect phishing websites owing to their constantly changing tactics.Furthermore,newer phishing websites exhibit subtle and expertly concealed indicators that are not readily detectable.Hence,effective detection depends on identifying the most critical features.Traditional feature selection(FS)methods often struggle to enhance ML model performance and instead decrease it.To combat these issues,we propose an innovative method using explainable AI(XAI)to enhance FS in ML models and improve the identification of phishing websites.Specifically,we employ SHapley Additive exPlanations(SHAP)for global perspective and aggregated local interpretable model-agnostic explanations(LIME)to deter-mine specific localized patterns.The proposed SHAP and LIME-aggregated FS(SLA-FS)framework pinpoints the most informative features,enabling more precise,swift,and adaptable phishing detection.Applying this approach to an up-to-date web phishing dataset,we evaluate the performance of three ML models before and after FS to assess their effectiveness.Our findings reveal that random forest(RF),with an accuracy of 97.41%and XGBoost(XGB)at 97.21%significantly benefit from the SLA-FS framework,while k-nearest neighbors lags.Our framework increases the accuracy of RF and XGB by 0.65%and 0.41%,respectively,outperforming traditional filter or wrapper methods and any prior methods evaluated on this dataset,showcasing its potential.展开更多
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ...With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.展开更多
In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati...In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.展开更多
Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The ...Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.展开更多
Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone...Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks.展开更多
文摘The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators.In this work,over 130 technical indicators—covering momentum,volatility,volume,and trend-related technical indicators—are subjected to three distinct feature selection approaches.Specifically,mutual information(MI),recursive feature elimination(RFE),and random forest importance(RFI).By extracting an optimal set of 20 predictors,the proposed framework aims to mitigate redundancy and overfitting while enhancing interpretability.These feature subsets are integrated into support vector regression(SVR),Huber regressors,and k-nearest neighbors(KNN)models to forecast the prices of three leading cryptocurrencies—Bitcoin(BTC/USDT),Ethereum(ETH/USDT),and Binance Coin(BNB/USDT)—across horizons ranging from 1 to 20 days.Model evaluation employs the coefficient of determination(R2)and the root mean squared logarithmic error(RMSLE),alongside a walk-forward validation scheme to approximate real-world trading contexts.Empirical results indicate that incorporating momentum and volatility measures substantially improves predictive accuracy,with particularly pronounced effects observed at longer forecast windows.Moreover,indicators related to volume and trend provide incremental benefits in select market conditions.Notably,an 80%–85% reduction in the original feature set frequently maintains or enhances model performance relative to the complete indicator set.These findings highlight the critical role of targeted feature selection in addressing high-dimensional financial data challenges while preserving model robustness.This research advances the field of cryptocurrency forecasting by offering a rigorous comparison of feature selection methods and their effects on multiple digital assets and prediction horizons.The outcomes highlight the importance of dimension-reduction strategies in developing more efficient and resilient forecasting algorithms.Future efforts should incorporate high-frequency data and explore alternative selection techniques to further refine predictive accuracy in this highly volatile domain.
文摘Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embedded methods,have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data.Deep learning-based FS methods,particularly Convolutional Neural Networks(CNNs)and autoencoders,have demonstrated superior performance but lack interpretability.Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution,offering improved accuracy and explainability.Furthermore,integratingmulti-modal imaging data(e.g.,MagneticResonance Imaging(MRI),ComputedTomography(CT),Positron Emission Tomography(PET),and Ultrasound(US))poses additional challenges in FS,necessitating advanced feature fusion strategies.Multi-modal feature fusion combines information fromdifferent imagingmodalities to improve diagnostic accuracy.Recently,quantum computing has gained attention as a revolutionary approach for FS,providing the potential to handle high-dimensional medical data more efficiently.This systematic literature review comprehensively examines classical,Deep Learning(DL),hybrid,and quantum-based FS techniques inmedical imaging.Key outcomes include a structured taxonomy of FS methods,a critical evaluation of their performance across modalities,and identification of core challenges such as computational burden,interpretability,and ethical considerations.Future research directions—such as explainable AI(XAI),federated learning,and quantum-enhanced FS—are also emphasized to bridge the current gaps.This review provides actionable insights for developing scalable,interpretable,and clinically applicable FS methods in the evolving landscape of medical imaging.
文摘Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Efficient feature selection methods are critical for improving diagnostic accuracy,reducing computational costs,and enhancing the interpretability of predictive models.Particle Swarm Optimization(PSO),a widely used metaheuristic inspired by swarm intelligence,has shown considerable promise in feature selection tasks.However,conventional PSO often suffers from premature convergence and limited exploration capabilities,particularly in high-dimensional spaces.To overcome these limitations,this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-tion and a Crossover Operator(OrPSOC).Orthogonal Initialization ensures a diverse and uniformly distributed initial particle population,substantially improving the algorithm’s exploration capability.The Crossover Operator,inspired by genetic algorithms,introduces additional diversity during the search process,effectively mitigating premature convergence and enhancing global search performance.The effectiveness of OrPSOC was rigorously evaluated on three benchmark medical datasets—Colon,Leukemia,and Prostate Tumor.Comparative analyses were conducted against traditional filter-based methods,including Fast Clustering-Based Feature Selection Technique(Fast-C),Minimum Redundancy Maximum Relevance(MinRedMaxRel),and Five-Way Joint Mutual Information(FJMI),as well as prominent metaheuristic algorithms such as standard PSO,Ant Colony Optimization(ACO),Comprehensive Learning Gravitational Search Algorithm(CLGSA),and Fuzzy-Based CLGSA(FCLGSA).Experimental results demonstrated that OrPSOC consistently outperformed these existing methods in terms of classification accuracy,computational efficiency,and result stability,achieving significant improvements even with fewer selected features.Additionally,a sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on model performance.These findings highlight the superiority and robustness of the proposed OrPSOC approach for feature selection in medical diagnostic applications and underscore its potential for broader adoption in various high-dimensional,data-driven fields.
文摘Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.
基金funded by Universiti Teknologi Malaysia under the UTM RA ICONIC Grant(Q.J130000.4351.09G61).
文摘Advanced Persistent Threats(APTs)represent one of the most complex and dangerous categories of cyber-attacks characterised by their stealthy behaviour,long-term persistence,and ability to bypass traditional detection systems.The complexity of real-world network data poses significant challenges in detection.Machine learning models have shown promise in detecting APTs;however,their performance often suffers when trained on large datasets with redundant or irrelevant features.This study presents a novel,hybrid feature selection method designed to improve APT detection by reducing dimensionality while preserving the informative characteristics of the data.It combines Mutual Information(MI),Symmetric Uncertainty(SU)and Minimum Redundancy Maximum Relevance(mRMR)to enhance feature selection.MI and SU assess feature relevance,while mRMR maximises relevance and minimises redundancy,ensuring that the most impactful features are prioritised.This method addresses redundancy among selected features,improving the overall efficiency and effectiveness of the detection model.Experiments on a real-world APT datasets were conducted to evaluate the proposed method.Multiple classifiers including,Random Forest,Support Vector Machine(SVM),Gradient Boosting,and Neural Networks were used to assess classification performance.The results demonstrate that the proposed feature selection method significantly enhances detection accuracy compared to baseline models trained on the full feature set.The Random Forest algorithm achieved the highest performance,with near-perfect accuracy,precision,recall,and F1 scores(99.97%).The proposed adaptive thresholding algorithm within the selection method allows each classifier to benefit from a reduced and optimised feature space,resulting in improved training and predictive performance.This research offers a scalable and classifier-agnostic solution for dimensionality reduction in cybersecurity applications.
基金funded by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.KFU241683].
文摘This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction monitoring systems.The framework is structured into three core layers:(1)feature selection using Recursive Feature Elimination(RFE),Principal Component Analysis(PCA),and Mutual Information(MI)to reduce dimensionality and enhance input relevance;(2)anomaly detection through unsupervised clustering using K-Means,Density-Based Spatial Clustering(DBSCAN),and Hierarchical Clustering to flag suspicious patterns in unlabeled data;and(3)final classification using a voting-based hybrid ensemble of Support Vector Machine(SVM),Random Forest(RF),and Gradient Boosting Classifier(GBC).The experimental evaluation is conducted on a synthetically generated dataset comprising one million financial transactions,with 5% labelled as fraudulent,simulating realistic fraud rates and behavioural features,including transaction time,origin,amount,and geo-location.The proposed model demonstrated a significant improvement over baseline classifiers,achieving an accuracy of 99%,a precision of 99%,a recall of 97%,and an F1-score of 99%.Compared to individual models,it yielded a 9% gain in overall detection accuracy.It reduced the false positive rate to below 3.5%,thereby minimising the operational costs associated with manually reviewing false alerts.The model’s interpretability is enhanced by the integration of Shapley Additive Explanations(SHAP)values for feature importance,supporting transparency and regulatory auditability.These results affirm the practical relevance of the proposed system for deployment in real-time fraud detection scenarios such as credit card transactions,mobile banking,and cross-border payments.The study also highlights future directions,including the deployment of lightweight models and the integration of multimodal data for scalable fraud analytics.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(13230550)the Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring,Anhui University of Science and Technology(KSXTJC202305)+1 种基金the State Key Laboratory of Geodesy and Earth's Dynamics,Innovation Academy for Precision Measurement Science and Technology(SKLGED2023-5-1)the China Postdoctoral Science Foundation(2023M733604).
文摘Soil moisture is a key parameter in the exchange of energy and water between the land surface and the atmosphere.This parameter plays an important role in the dynamics of permafrost on the Qinghai-Xizang Plateau,China,as well as in the related ecological and hydrological processes.However,the region's complex terrain and extreme climatic conditions result in low-accuracy soil moisture estimations using traditional remote sensing techniques.Thus,this study considered parameters of the backscatter coefficient of Sentinel-1A ground range detected(GRD)data,the polarization decomposition parameters of Sentinel-1A single-look complex(SLC)data,the normalized difference vegetation index(NDVI)based on Sentinel-2B data,and the topographic factors based on digital elevation model(DEM)data.By combining these parameters with a machine learning model,we established a feature selection rule.A cumulative importance threshold was derived for feature variables,and those variables that failed to meet the threshold were eliminated based on variations in the coefficient of determination(R^(2))and the unbiased root mean square error(ubRMSE).The eight most influential variables were selected and combined with the CatBoost model for soil moisture inversion,and the SHapley Additive exPlanations(SHAP)method was used to analyze the importance of these variables.The results demonstrated that the optimized model significantly improved the accuracy of soil moisture inversion.Compared to the unfiltered model,the optimal feature combination led to a 0.09 increase in R^(2)and a 0.7%reduction in ubRMSE.Ultimately,the optimized model achieved a R²of 0.87 and an ubRMSE of 5.6%.Analysis revealed that soil particle size had significant impact on soil water retention capacity.The impact of vegetation on the estimated soil moisture on the Qinghai-Xizang Plateau was considerable,demonstrating a significant positive correlation.Moreover,the microtopographical features of hummocks interfered with soil moisture estimation,indicating that such terrain effects warrant increased attention in future studies within the permafrost regions.The developed method not only enhances the accuracy of soil moisture retrieval in the complex terrain of the Qinghai-Xizang Plateau,but also exhibits high computational efficiency(with a relative time reduction of 18.5%),striking an excellent balance between accuracy and efficiency.This approach provides a robust framework for efficient soil moisture monitoring in remote areas with limited ground data,offering critical insights for ecological conservation,water resource management,and climate change adaptation on the Qinghai-Xizang Plateau.
文摘Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certain models,they do not invariably guarantee the extraction of the most critical or impactful features.Prior literature underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification of appropriate features.However,the challenge of discerning the most relevant and influential features persists,particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly salient in modern artificial intelligence(AI)applications.In response,this study introduces an innovative,automated statistical method termed Farea Similarity for Feature Selection(FSFS).The FSFS approach computes a similarity metric for each feature by benchmarking it against the record-wise mean,thereby finding feature dependencies and mitigating the influence of outliers that could potentially distort evaluation outcomes.Features are subsequently ranked according to their similarity scores,with the threshold established at the average similarity score.Notably,lower FSFS values indicate higher similarity and stronger data correlations,whereas higher values suggest lower similarity.The FSFS method is designed not only to yield reliable evaluation metrics but also to reduce data complexity without compromising model performance.Comparative analyses were performed against several established techniques,including Chi-squared(CS),Correlation Coefficient(CC),Genetic Algorithm(GA),Exhaustive Approach,Greedy Stepwise Approach,Gain Ratio,and Filtered Subset Eval,using a variety of datasets such as the Experimental Dataset,Breast Cancer Wisconsin(Original),KDD CUP 1999,NSL-KDD,UNSW-NB15,and Edge-IIoT.In the absence of the FSFS method,the highest classifier accuracies observed were 60.00%,95.13%,97.02%,98.17%,95.86%,and 94.62%for the respective datasets.When the FSFS technique was integrated with data normalization,encoding,balancing,and feature importance selection processes,accuracies improved to 100.00%,97.81%,98.63%,98.94%,94.27%,and 98.46%,respectively.The FSFS method,with a computational complexity of O(fn log n),demonstrates robust scalability and is well-suited for datasets of large size,ensuring efficient processing even when the number of features is substantial.By automatically eliminating outliers and redundant data,FSFS reduces computational overhead,resulting in faster training and improved model performance.Overall,the FSFS framework not only optimizes performance but also enhances the interpretability and explainability of data-driven models,thereby facilitating more trustworthy decision-making in AI applications.
文摘Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models.
基金the Shenzhen Fundamental Research Fund(No.JCYJ20210324122801005)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2023022).
文摘The complex compositions of high-entropy alloys(HEAs)enable a variety of phase structures like FCC single phase,BCC single phase,or duplex FCC+BCC phase.Accurate and efficient prediction of phase structure is crucial for accelerating the discovery of new components and designing HEAs with desired phase structure.In this work,five machine learning strategies were utilized to predict the phase structures of HEAs with a dataset of 296.Specifically,a two-step feature selection strategy was proposed,enabling pronounced improvement in the computational efficiency from 2047 to 12 iterations for each model while ensuring fewer input features and higher prediction accuracy.Compared with traditional valence electron concentration criterion,the prediction accuracy of collected dataset was highly improved from 0.79 to 0.98 for random forest.Furthermore,HEAs with compositions of Al_(x)CoCu_(6)Ni_(6)Fe_(6)(x=1,3,6)were developed to validate the prediction results of machine learning models,and the mechanical properties as well as corrosion resistance were investigated.It is found that the higher Al content enhances the yield strength but deteriorates corrosion resistance.The present two-step feature selection strategy provides an alternative method that is feasible for predicting the phase structure of HEAs with high efficiency and accuracy.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3702404)the National Natural Science Foundation of China(Grant No.52104370)+4 种基金the Reviving-Liaoning Excellence Plan(XLYC2203186)Science and Technology Special Projects of Liaoning Province(Grant No.2022JH25/10200001)the Postdoctoral Research Fund for Northeastern(Grant No.20210203)Independent Projects of Basic Scientific Research(ZZ2021005)CITIC Niobium Steel Development Award Fund(2022-M1824).
文摘Selecting proper descriptors(also known feature selection,FS)is key in the process of establishing mechanical properties prediction model of hot-rolled microalloyed steels by using machine learning(ML)algorithm.FS methods based on data-driving can reduce the redundancy of data features and improve the prediction accuracy of mechanical properties.Based on the collected data of hot-rolled microalloyed steels,the association rules are used to mine the correlation information between the data.High-quality feature subsets are selected by the proposed FS method(FS method based on genetic algorithm embedding,GAMIC).Compared with the common FS method,it is shown on dataset that GAMIC selects feature subsets more appropriately.Six different ML algorithms are trained and tested for mechanical properties prediction.The result shows that the root-mean-square error of yield strength,tensile strength and elongation based on limit gradient enhancement(XGBoost)algorithm is 21.95 MPa,20.85 MPa and 1.96%,the correlation coefficient(R^(2))is 0.969,0.968 and 0.830,and the mean absolute error is 16.84 MPa,15.83 MPa and 1.48%,respectively,showing the best prediction performance.Finally,SHapley Additive exPlanation is used to further explore the influence of feature variables on mechanical properties.GAMIC feature selection method proposed is universal,which provides a basis for the development of high-precision mechanical property prediction model.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.300102122105)the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-YB-023).
文摘Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems.
文摘Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis of this malignancy;however,manual observation of the blood smear is very time-consuming and requires labor and expertise.Transfer learning in deep neural networks is of growing importance to intricate medical tasks such as medical imaging.Our work proposes an application of a novel ensemble architecture that puts together Vision Transformer and EfficientNetV2.This approach fuses deep and spatial features to optimize discriminative power by selecting features accurately,reducing redundancy,and promoting sparsity.Besides the architecture of the ensemble,the advanced feature selection is performed by the Frog-Snake Prey-Predation Relationship Optimization(FSRO)algorithm.FSRO prioritizes the most relevant features while dynamically reducing redundant and noisy data,hence improving the efficiency and accuracy of the classification model.We have compared our method for feature selection against state-of-the-art techniques and recorded an accuracy of 94.88%,a recall of 94.38%,a precision of 96.18%,and an F1-score of 95.63%.These figures are therefore better than the classical methods for deep learning.Though our dataset,collected from four different hospitals,is non-standard and heterogeneous,making the analysis more challenging,although computationally expensive,our approach proves diagnostically superior in cancer detection.Source codes and datasets are available on GitHub.
文摘In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and machine learning(ML)-based detection systems struggle to detect phishing websites owing to their constantly changing tactics.Furthermore,newer phishing websites exhibit subtle and expertly concealed indicators that are not readily detectable.Hence,effective detection depends on identifying the most critical features.Traditional feature selection(FS)methods often struggle to enhance ML model performance and instead decrease it.To combat these issues,we propose an innovative method using explainable AI(XAI)to enhance FS in ML models and improve the identification of phishing websites.Specifically,we employ SHapley Additive exPlanations(SHAP)for global perspective and aggregated local interpretable model-agnostic explanations(LIME)to deter-mine specific localized patterns.The proposed SHAP and LIME-aggregated FS(SLA-FS)framework pinpoints the most informative features,enabling more precise,swift,and adaptable phishing detection.Applying this approach to an up-to-date web phishing dataset,we evaluate the performance of three ML models before and after FS to assess their effectiveness.Our findings reveal that random forest(RF),with an accuracy of 97.41%and XGBoost(XGB)at 97.21%significantly benefit from the SLA-FS framework,while k-nearest neighbors lags.Our framework increases the accuracy of RF and XGB by 0.65%and 0.41%,respectively,outperforming traditional filter or wrapper methods and any prior methods evaluated on this dataset,showcasing its potential.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.
基金funded by the Ministry of Higher Education of Malaysia,grant number FRGS/1/2022/ICT02/UPSI/02/1.
文摘In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.
基金supported by the Anhui Provincial Department of Education University Research Project(2024AH051375)Research Project of Chizhou University(CZ2022ZRZ06)+1 种基金Anhui Province Natural Science Research Project of Colleges and Universities(2024AH051368)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.
文摘Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks.