期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Research on indoor positioning and navigating technology based on scale hierarchical visual image feature matching
1
作者 BIE Haoze QIN Danyang +1 位作者 YANG Jiaqiang LI Sitong 《High Technology Letters》 2025年第2期164-174,共11页
The impact of location services on people’s lives has grown significantly in the era of widespread smart device usage.Due to global navigation satellite system(GNSS)signal rejection,weak signal strength in indoor env... The impact of location services on people’s lives has grown significantly in the era of widespread smart device usage.Due to global navigation satellite system(GNSS)signal rejection,weak signal strength in indoor environments and radio signal interference caused by multiwall environments,which collectively lead to significant positioning errors,vision-based positioning has emerged as a crucial method in indoor positioning research.This paper introduces a scale hierarchical matching model to tackle challenges associated with large visual databases and high scene similarity,both of which will compromise matching accuracy and lead to prolonged positioning delays.The proposed model establishes an image feature database using GIST features and speeded up robust feature(SURF)in the offline stage.In the online stage,a positioning navigating algorithm is constructed based on Dijkstra’s path planning.Additionally,a corresponding Android application has been developed to facilitate visual positioning and navigation in indoor environments.Experimental results obtained in real indoor environments demonstrate that the proposed method significantly enhances positioning accuracy compared with similar algorithms,while effectively reducing time overhead.This improvement caters to the requirements for indoor positioning and navigation,thereby meeting user needs. 展开更多
关键词 visual feature scale hierarchy feature matching indoor positioning indoor navigation
在线阅读 下载PDF
Research on the accurate calculation method of crater position in lunar surface images based on feature matching
2
作者 Yanning Zheng Xue Dong +5 位作者 Zhipeng Liang Jian Gao Bowen Guan Liyan Sun Xingwei Han He Dong 《Astronomical Techniques and Instruments》 2025年第4期265-273,共9页
Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achi... Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achieved by tracking stars in the all-sky region,we propose a processing scheme to select larger-sized lunar craters near the Lunar Corner Cube Retroreflector as reference features for telescope pointing bias computation.Accurately determining the position of the craters in the images is crucial for calculating the pointing bias;therefore,we propose a method for accurately calculating the crater position based on lunar surface feature matching.This method uses matched feature points obtained from image feature matching,using a deep learning method to solve the image transformation matrix.The known position of a crater in a reference image is mapped using this matrix to calculate the crater position in the target image.We validate this method using craters near the Lunar Corner Cube Retroreflectors of Apollo 15 and Luna 17 and find that the calculated position of a crater on the target image falls on the center of the crater,even for image features with large distortion near the lunar limb.The maximum image matching error is approximately 1″,and the minimum is only 0.47″,which meets the pointing requirements of Lunar Laser Ranging.This method provides a new technical means for the high-precision pointing bias calculation of the Lunar Laser Ranging system. 展开更多
关键词 Lunar Laser Ranging system High-precision pointing correction Lunar surface features Image feature matching Deep learning Crater position calculation
在线阅读 下载PDF
BLFM-Net:An Efficient Regional Feature Matching Method for Bronchoscopic Surgery Based on Deep Learning Object Detection
3
作者 He Su Jianwei Gao Kang Kong 《Computers, Materials & Continua》 2025年第6期4193-4213,共21页
Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the ... Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the challenges of image noise,anatomical complexity,and the stringent real-time requirements.The BLFM-Net enhances bronchoscopic image processing by integrating several functional modules.The FFA-Net preprocessing module mitigates image fogging and improves visual clarity for subsequent processing.The feature extraction module derives multi-dimensional features,such as centroids,area,and shape descriptors,from dehazed images.The Faster RCNN Object detection module detects bronchial regions of interest and generates bounding boxes to localize key areas.The feature matching module accelerates the process by combining detection boxes,extracted features,and a KD-Tree(K-Dimensional Tree)-based algorithm,ensuring efficient and accurate regional feature associations.The BLFM-Net was evaluated on 5212 bronchoscopic images,demonstrating superior performance compared to traditional and other deep learning-based image matching methods.It achieved real-time matching with an average frame time of 6 ms,with a matching accuracy of over 96%.The method remained robust under challenging conditions including frame dropping(0,5,10,20),shadowed regions,and variable lighting,maintaining accuracy of above 94%even with the frame dropping of 20.This study presents BLFM-Net,a deep learning-based matching network designed to enhance and match bronchial features in bronchoscopic images.The BLFM-Net shows improved accuracy,real-time performance,and reliability,making a valuable tool for bronchoscopic surgeries. 展开更多
关键词 Bronchial region feature matching bronchoscopic tracking real-time processing bronchial texture features bronchial texture features deep learning medical image dehazing
在线阅读 下载PDF
Feature Matching via Topology-Aware Graph Interaction Model
4
作者 Yifan Lu Jiayi Ma +2 位作者 Xiaoguang Mei Jun Huang Xiao-Ping Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期113-130,共18页
Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier ... Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model,is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous localitybased method without noticeable deterioration in processing time,adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching(TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM. 展开更多
关键词 feature matching graph cut outlier filtering topology preserving
在线阅读 下载PDF
A fast, accurate and dense feature matching algorithm for aerial images 被引量:2
5
作者 LI Ying GONG Guanghong SUN Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1128-1139,共12页
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis... Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches. 展开更多
关键词 feature matching feature screening feature fusion aerial image three-dimensional(3D)reconstruction
在线阅读 下载PDF
Transfer Learning Based on Joint Feature Matching and Adversarial Networks 被引量:1
6
作者 ZHONG Haowen WANG Chao +3 位作者 TUO Hongya HU Jian QIAO Lingfeng JING Zhongliang 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第6期699-705,共7页
Domain adaptation and adversarial networks are two main approaches for transfer learning.Domain adaptation methods match the mean values of source and target domains,which requires a very large batch size during train... Domain adaptation and adversarial networks are two main approaches for transfer learning.Domain adaptation methods match the mean values of source and target domains,which requires a very large batch size during training.However,adversarial networks are usually unstable when training.In this paper,we propose a joint method of feature matching and adversarial networks to reduce domain discrepancy and mine domaininvariant features from the local and global aspects.At the same time,our method improves the stability of training.Moreover,the method is embedded into a unified convolutional neural network that can be easily optimized by gradient descent.Experimental results show that our joint method can yield the state-of-the-art results on three common public datasets. 展开更多
关键词 transfer learning adversarial networks feature matching domain-invariant features
原文传递
Trifocal Tensor Based Feature Matching Algorithm 被引量:1
7
作者 Mingwei Shao Pan Wang 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期484-488,共5页
Feature matching is of significance in the field of computer vision.In this paper,a trifocal tensor based feature matching algorithm is proposed for three views,including a trinocular vision system.Initial matching po... Feature matching is of significance in the field of computer vision.In this paper,a trifocal tensor based feature matching algorithm is proposed for three views,including a trinocular vision system.Initial matching point-pairs can be determined according to generic matching algorithms,on which an initial trifocal tensor of three views can be confirmed.Then the initial matching point-pairs should be re-selected.Meanwhile,the trifocal tensor will be recomputed.Iteratively,the optimized trifocal tensor can be obtained.Compatible fundamental matrix of every two views can be determined.Furthermore,in the trinocular vision sensor,the trifocal tensor can be calculated based on the intrinsic parameter matrix of each camera.With the strict constraint provided by the trifocal tensor,feature matching results will be optimized.Experiments show that our proposed algorithm has the characteristics of feasibility and precision. 展开更多
关键词 OPTICS trifocal tensor feature matching
在线阅读 下载PDF
Method of weld recognition based on textural feature matching
8
作者 邹怡蓉 王胜华 +2 位作者 都东 张文增 常保华 《China Welding》 EI CAS 2009年第4期21-25,共5页
In this paper an automatic visual method of seam recognizing and seam tracking based on textural feature matching was proposed, in order to recognize the weld of multi-layer or multi-pass welding in which the weld is ... In this paper an automatic visual method of seam recognizing and seam tracking based on textural feature matching was proposed, in order to recognize the weld of multi-layer or multi-pass welding in which the weld is difficult to be recognized by conventional visual methods. This method focuses on the obvious difference of image textural feature between the weld region and the base metal region, as well as the similarity of the textural features along the welding direction. The method consists of the following steps : setting image template and choosing the edge region as ROI ( region of interest ), extracting the image textural feature of the template and the edge region, feature matching, and recognition of weld region. Experiment showed that the method proposed was effective for weld seam recognition in multi-layer welding. 展开更多
关键词 weld region recognition image texture feature matching
在线阅读 下载PDF
Optimal Planning and Operation of Multi-type Flexible Resources Based on Differentiated Feature Matching in Regional Power Grid with High Proportion of Clean Energy
9
作者 Jie Li Xiaoming Liu +4 位作者 Zixuan Zheng Xianyong Xiao Shu Zhang Hongzhi Gao Yongjun Zhou 《Journal of Modern Power Systems and Clean Energy》 CSCD 2024年第6期1724-1736,共13页
The optimal planning and operation of multi-type flexible resources(FRs)are critical prerequisites for maintaining power and energy balance in regional power grids with a high proportion of clean energy.However,insuff... The optimal planning and operation of multi-type flexible resources(FRs)are critical prerequisites for maintaining power and energy balance in regional power grids with a high proportion of clean energy.However,insufficient consideration of the multi-dimensional and heterogeneous features of FRs,such as the regulation characteristics of diversified battery energy storage systems(BESSs),poses a challenge in economically relieving imbalance power and adequately sharing feature information between power supply and demand.In view of this disadvantage,an optimal planning and operation method based on differentiated feature matching through response capability characterization and difference quantification of FRs is proposed in this paper.In the planning stage,a model for the optimal planning of diversified energy storages(ESs)including Lithium-ion battery(Li-B),supercapacitor energy storage(SCES),compressed air energy storage(CAES),and pumped hydroelectric storage(PHS)is established.Subsequently,in the operating stage,the potential,direction,and cost of FR response behaviors are refined to match with the power and energy balance demand(PEBD)of power grid operation.An optimal operating algorithm is then employed to quantify the feature differences and output response sequences of multi-type FRs.The performance and effectiveness of the proposed method are demonstrated through comparative studies conducted on an actual regional power grid in northwest China.Analysis and simulation results illustrate that the proposed method can effectively highlight the advantages of BESSs compared with other ESs,and economically reduce imbalance power of the regional power grid under practical operating conditions. 展开更多
关键词 Regional power grid planning and operation energy storage flexible resource response capability feature matching
原文传递
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
10
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model Self-organizing mapping neural network Deep feature matching Deep learning
在线阅读 下载PDF
CMMCAN:Lightweight Feature Extraction and Matching Network for Endoscopic Images Based on Adaptive Attention
11
作者 Nannan Chong Fan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2761-2783,共23页
In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clini... In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness. 展开更多
关键词 feature extraction and matching lightweighted network medical images ENDOSCOPIC ATTENTION
在线阅读 下载PDF
Absence Importance and Its Application to Feature Detection and Matching 被引量:2
12
作者 Zhi-Heng Wang Qin-Feng Song +1 位作者 Hong-Min Liu Zhan-Qiang Huo 《International Journal of Automation and computing》 EI CSCD 2016年第5期480-490,共11页
Feature detection and matching play important roles in many fields of computer vision, such as image understanding, feature recognition, 3D-reconstruction, video analysis, etc. Extracting features is usually the first... Feature detection and matching play important roles in many fields of computer vision, such as image understanding, feature recognition, 3D-reconstruction, video analysis, etc. Extracting features is usually the first step for feature detection or matching, and the gradient feature is one of the most used selections. In this paper, a new image feature-absence importance (AI) feature, which can directly characterize the local structure information, is proposed. Greatly different from the most existing features, the proposed absence importance feature is mainly based on the consideration that the absence of the important pixel will have a great effect on the local structure. Two absence importance features, mean absence importance (MAI) and standard deviation absence importance (SDAI), are defined and used subsequently to construct new algorithms for feature detection and matching. Experiments demonstrate that the proposed absence importance features can be used as an important complement of the gradient feature and applied successfully to the fields of feature detection and matching. 展开更多
关键词 Absence importance (AI) feature detection feature matching mean absence importance (MAI) standard deviation absence importance (SDAI).
原文传递
A New Algorithm for Feature Matching in Reverse Engineering 被引量:1
13
作者 朱根松 周天瑞 周捷 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第S1期43-46,共4页
Feature recognition and surface reconstruction from point clouds are difficulties in reverse engineering. A new surface reconstruction algorithm for slicing point cloud was presented. The contours of slice were extrac... Feature recognition and surface reconstruction from point clouds are difficulties in reverse engineering. A new surface reconstruction algorithm for slicing point cloud was presented. The contours of slice were extracted. Then, the intersection of two adjacent curve segments in the contour was obtained and curves feature was extracted. Finally, adjacent section contours were matched directly with Fourier-Mellin curve matching method for feature extraction. An example of 3-D model reconstruction shows the reliability and application of the algorithm. 展开更多
关键词 reverse engineering SLICE curve reconstruction feature recognition feature matching
原文传递
Robust template feature matching method using motion-constrained DCF designed for visual navigation in asteroid landing 被引量:1
14
作者 Yaqiong Wang Xiongfeng Yan +4 位作者 Zhen Ye Huan Xie Shijie Liu Xiong Xu Xiaohua Tong 《Astrodynamics》 EI CSCD 2023年第1期83-99,共17页
A robust and eficient feature matching method is necessary for visual navigation in asteroid-landing missions.Based on the visual navigation framework and motion characteristics of asteroids,a robust and efficient tem... A robust and eficient feature matching method is necessary for visual navigation in asteroid-landing missions.Based on the visual navigation framework and motion characteristics of asteroids,a robust and efficient template feature matching method is proposed to adapt to feature distortion and scale change cases for visual navigation of asteroids.The proposed method is primarily based on a motion-constrained discriminative correlation filter(DCF).The prior information provided by the motion constraints between sequence images is used to provide a predicted search region for template feature matching.Additionally,some specific template feature samples are generated using the motion constraints for correlation filter learning,which is beneficial for training a scale and feature distortion adaptive correlation filter for accurate feature matching.Moreover,average peak-to-correlation energy(APCE)and jointly consistent measurements(JCMs)were used to eliminate false matching.Images captured by the Touch And Go Camera System(TAGCAMS)of the Bennu asteroid were used to evaluate the performance of the proposed method.In particular,both the robustness and accuracy of region matching and template center matching are evaluated.The qualitative and quantitative results illustrate the advancement of the proposed method in adapting to feature distortions and large-scale changes during spacecraft landing. 展开更多
关键词 discriminative correlation filter(DCF) motion constraints feature distortion adaptive scale changes adaptive template feature matching
原文传递
GeoGlue: feature matching with self-supervised geometric priors for high-resolution UAV images
15
作者 Weijia Bei Xiangtao Fan +2 位作者 Hongdeng Jian Xiaoping Du Dongmei Yan 《International Journal of Digital Earth》 SCIE EI 2023年第1期1246-1275,共30页
We present GeoGlue,a novel method using high-resolution UAV imagery for accurate feature matching,which is normally challenging due to the complicated scenes.Current feature detection methods are performed without gui... We present GeoGlue,a novel method using high-resolution UAV imagery for accurate feature matching,which is normally challenging due to the complicated scenes.Current feature detection methods are performed without guidance of geometric priors(e.g.,geometric lines),lacking enough attention given to salient geometric features which are indispensable for accurate matching due to their stable existence across views.In this work,geometric lines arefirstly detected by a CNN-based geometry detector(GD)which is pre-trained in a self-supervised manner through automatically generated images.Then,geometric lines are naturally vectorized based on GD and thus non-significant features can be disregarded as judged by their disordered geometric morphology.A graph attention network(GAT)is utilized forfinal feature matching,spanning across the image pair with geometric priors informed by GD.Comprehensive experiments show that GeoGlue outperforms other state-of-the-art methods in feature-matching accuracy and performance stability,achieving pose estimation with maximum rotation and translation errors under 1%in challenging scenes from benchmark datasets,Tanks&Temples and ETH3D.This study also proposes thefirst self-supervised deep-learning model for curved line detection,generating geometric priors for matching so that more attention is put on prominent features and improving the visual effect of 3D reconstruction. 展开更多
关键词 feature matching geometric priors self-supervised learning graph attention network 3D reconstruction digital earth
原文传递
Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction
16
作者 Huan Liu Ying Xiao +1 位作者 Wei-Dong Tang Yan-Hui Zhou 《International Journal of Automation and computing》 EI CSCD 2014年第5期469-479,共11页
This paper puts forward a method for abdomen panorama reconstruction based on a stereo vision system. For the purpose of recovering the abdomen completely and accurately under the condition of actual photographing wit... This paper puts forward a method for abdomen panorama reconstruction based on a stereo vision system. For the purpose of recovering the abdomen completely and accurately under the condition of actual photographing with illumination variance and blur noise, some innovative combined feature descriptors are presented on the basis of Hu-moment invariants. Furthermore, considering the study on the abdomen surface reconstruction, a circle template which is divided into 6 sectors is designed. It is noted that a descriptor merely using gray intensity is not able to provide sufficient information for feature description. Consequently, the sector entropy which denotes the structure characteristics is drawn into the feature descriptor. By means of the combined effect of the gray intensity and the sector entropy, the similarity measurement is conducted for the final abdomen reconstruction. The experimental results reveal that the proposed method can acquire a high precision of abdomen reconstruction similar to the 3D scanner. This stereo vision system has wide practicability in the field of clothing. 展开更多
关键词 Stereo vision system illumination-robust and anti-blur combined invariant sector entropy circle template feature matching 3D reconstruction
原文传递
Individual Identification of Dairy Cows Based on Deep Feature Extrac-tion and Matching
17
作者 Shen Wei-zheng Sun Jia +4 位作者 Liang Chen Shi Wei Guo Jin-yan Zhang Zhe Zhang Yong-gen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第3期85-96,共12页
Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional n... Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry. 展开更多
关键词 cow individual identification convolutional neural networks deep feature extraction feature matching
在线阅读 下载PDF
Image Feature Extraction and Matching of Augmented Solar Images in Space Weather 被引量:1
18
作者 WANG Rui BAO Lili CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2023年第5期840-852,共13页
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed... Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms. 展开更多
关键词 Augmented reality Augmented image Image feature point extraction and matching Space weather Solar image
在线阅读 下载PDF
A calculation method for low dynamic vehicle velocity based on fusion of optical flow and feature point matching
19
作者 Liu Di Chen Xiyuan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期426-431,共6页
Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the... Aming at the problem of the low accuracy of low dynamic vehicle velocity under the environment of uneven distribution of light intensity,an improved adaptive Kalman filter method for the velocity error estimate by the fusion of optical flow tracking and scale mvaiant feature transform(SIFT)is proposed.The algorithm introduces anonlinear fuzzy membership function and the filter residual for the noise covariance matrix in the adaptive adjustment process.In the process of calculating the velocity of the vehicle,the tracking and matching of the inter-frame displacement a d the vehicle velocity calculation a e carried out by using the optical fow tracing and the SIF'T methods,respectively.Meanwhile,the velocity difference between theoutputs of thesetwo methods is used as the observation of the improved adaptive Kalman filter.Finally,the velocity calculated by the optical fow method is corrected by using the velocity error estimate of the output of the modified adaptive Kalman filter.The results of semi-physical experiments show that the maximum velocityeror of the fusion algorithm is decreased by29%than that of the optical fow method,and the computation time is reduced by80%compared with the SIFT method. 展开更多
关键词 VELOCITY optical fow feature point matching non-uniform light intensity distribution
在线阅读 下载PDF
FeatureMatching Combining Variable Velocity Model with Reverse Optical Flow
20
作者 Chang Zhao Wei Sun +3 位作者 Xiaorui Zhang Xiaozheng He Jun Zuo Wei Zhao 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1083-1094,共12页
The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an... The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition. 展开更多
关键词 Visual SLAM feature point matching variable velocity model reverse optical flow
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部