期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Improved Spectral Amplitude Modulation Based on Sparse Feature Adaptive Convolution for Variable Speed Fault Diagnosis of Bearing
1
作者 Jiawei Lin Changkun Han +3 位作者 Wei Lu Liuyang Song Peng Chen Huaqing Wang 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期31-43,共13页
Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplit... Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplitude modulation(ISAM)based on sparse feature adaptive convolution(SFAC)is proposed to enhance the fault features under variable speed conditions.First,an optimal bi-damped wavelet construction method is proposed to learn signal impulse features,which selects the optimal bi-damped wavelet parameters with correlation criterion and particle swarm optimization.Second,a convolutional basis pursuit denoising model based on an optimal bi-damped wavelet is proposed for resolving sparse impulses.A model regularization parameter selection method based on weighted fault characteristic amplitude ratio assistance is proposed.Then,an ISAM method based on kurtosis threshold is proposed to further enhance the fault information of sparse signal.Finally,the type of variable speed faults is determined by order spectrum analysis.Various experimental results,such as spectral amplitude modulation and Morlet wavelet matching,verify the effectiveness and advantages of the ISAM-SFAC method. 展开更多
关键词 bearing fault diagnosis feature enhancement sparse representation spectral amplitude modulation variable speed
在线阅读 下载PDF
Multi-relation spatiotemporal graph residual network model with multi-level feature attention:A novel approach for landslide displacement prediction
2
作者 Ziqian Wang Xiangwei Fang +3 位作者 Wengang Zhang Xuanming Ding Luqi Wang Chao Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4211-4226,共16页
Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,ther... Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction. 展开更多
关键词 Landslide displacement prediction Spatiotemporal fusion Dynamic graph Data feature enhancement Multi-level feature attention
在线阅读 下载PDF
RC2DNet:Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction
3
作者 Zilu Liu Hongjin Zhu 《Computers, Materials & Continua》 2025年第10期681-694,共14页
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,... Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds. 展开更多
关键词 Surface defect detection computer vision small object feature extraction boundary feature enhancement
在线阅读 下载PDF
Guided-YNet: Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network 被引量:1
4
作者 Tao Zhou Yunfeng Pan +3 位作者 Huiling Lu Pei Dang Yujie Guo Yaxing Wang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4813-4832,共20页
Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesio... Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions.To solve the problem,the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network(Guide-YNet)is proposed in this paper.Firstly,a double-encoder single-decoder U-Net is used as the backbone in this model,a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and transmit it into the skip connection of the backbone,and the high sensitivity of PET images to tumors is used to guide the network to accurately locate lesions.Secondly,a Cross Scale Feature Enhancement Module(CSFEM)is designed to extract multi-scale fusion features after downsampling.Thirdly,a Cross-Layer Interactive Feature Enhancement Module(CIFEM)is designed in the encoder to enhance the spatial position information and semantic information.Finally,a Cross-Dimension Cross-Layer Feature Enhancement Module(CCFEM)is proposed in the decoder,which effectively extractsmultimodal image features through global attention and multi-dimension local attention.The proposed method is verified on the lung multimodal medical image datasets,and the results showthat theMean Intersection overUnion(MIoU),Accuracy(Acc),Dice Similarity Coefficient(Dice),Volumetric overlap error(Voe),Relative volume difference(Rvd)of the proposed method on lung lesion segmentation are 87.27%,93.08%,97.77%,95.92%,89.28%,and 88.68%,respectively.It is of great significance for computer-aided diagnosis. 展开更多
关键词 Medical image segmentation U-Net saliency feature guidance cross-modal feature enhancement cross-dimension feature enhancement
在线阅读 下载PDF
BDPartNet: Feature Decoupling and Reconstruction Fusion Network for Infrared and Visible Image 被引量:1
5
作者 Xuejie Wang Jianxun Zhang +2 位作者 Ye Tao Xiaoli Yuan Yifan Guo 《Computers, Materials & Continua》 SCIE EI 2024年第6期4621-4639,共19页
While single-modal visible light images or infrared images provide limited information,infrared light captures significant thermal radiation data,whereas visible light excels in presenting detailed texture information... While single-modal visible light images or infrared images provide limited information,infrared light captures significant thermal radiation data,whereas visible light excels in presenting detailed texture information.Com-bining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations,resulting in high-quality images with enhanced contrast and rich texture details.Such capabilities hold promising applications in advanced visual tasks including target detection,instance segmentation,military surveillance,pedestrian detection,among others.This paper introduces a novel approach,a dual-branch decomposition fusion network based on AutoEncoder(AE),which decomposes multi-modal features into intensity and texture information for enhanced fusion.Local contrast enhancement module(CEM)and texture detail enhancement module(DEM)are devised to process the decomposed images,followed by image fusion through the decoder.The proposed loss function ensures effective retention of key information from the source images of both modalities.Extensive comparisons and generalization experiments demonstrate the superior performance of our network in preserving pixel intensity distribution and retaining texture details.From the qualitative results,we can see the advantages of fusion details and local contrast.In the quantitative experiments,entropy(EN),mutual information(MI),structural similarity(SSIM)and other results have improved and exceeded the SOTA(State of the Art)model as a whole. 展开更多
关键词 Deep learning feature enhancement computer vision
在线阅读 下载PDF
Detecting XSS with Random Forest and Multi-Channel Feature Extraction
6
作者 Qiurong Qin Yueqin Li +3 位作者 Yajie Mi Jinhui Shen Kexin Wu Zhenzhao Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期843-874,共32页
In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through cr... In the era of the Internet,widely used web applications have become the target of hacker attacks because they contain a large amount of personal information.Among these vulnerabilities,stealing private data through crosssite scripting(XSS)attacks is one of the most commonly used attacks by hackers.Currently,deep learning-based XSS attack detection methods have good application prospects;however,they suffer from problems such as being prone to overfitting,a high false alarm rate,and low accuracy.To address these issues,we propose a multi-stage feature extraction and fusion model for XSS detection based on Random Forest feature enhancement.The model utilizes RandomForests to capture the intrinsic structure and patterns of the data by extracting leaf node indices as features,which are subsequentlymergedwith the original data features to forma feature setwith richer information content.Further feature extraction is conducted through three parallel channels.Channel I utilizes parallel onedimensional convolutional layers(1Dconvolutional layers)with different convolutional kernel sizes to extract local features at different scales and performmulti-scale feature fusion;Channel II employsmaximum one-dimensional pooling layers(max 1D pooling layers)of various sizes to extract key features from the data;and Channel III extracts global information bi-directionally using a Bi-Directional Long-Short TermMemory Network(Bi-LSTM)and incorporates a multi-head attention mechanism to enhance global features.Finally,effective classification and prediction of XSS are performed by fusing the features of the three channels.To test the effectiveness of the model,we conduct experiments on six datasets.We achieve an accuracy of 100%on the UNSW-NB15 dataset and 99.99%on the CICIDS2017 dataset,which is higher than that of the existing models. 展开更多
关键词 Random forest feature enhancement three-channel parallelism XSS detection
在线阅读 下载PDF
A Progressive Feature Fusion-Based Manhole Cover Defect Recognition Method
7
作者 Tingting Hu Xiangyu Ren +2 位作者 Wanfa Sun Shengying Yang Boyang Feng 《Journal of Computer and Communications》 2024年第8期307-316,共10页
Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniq... Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniques primarily focus on detecting the presence of covers rather than classifying the types of defects. However, manhole cover defects exhibit small inter-class feature differences and large intra-class feature variations, which makes their recognition challenging. To improve the classification of manhole cover defect types, we propose a Progressive Dual-Branch Feature Fusion Network (PDBFFN). The baseline backbone network adopts a multi-stage hierarchical architecture design using Res-Net50 as the visual feature extractor, from which both local and global information is obtained. Additionally, a Feature Enhancement Module (FEM) and a Fusion Module (FM) are introduced to enhance the network’s ability to learn critical features. Experimental results demonstrate that our model achieves a classification accuracy of 82.6% on a manhole cover defect dataset, outperforming several state-of-the-art fine-grained image classification models. 展开更多
关键词 feature Enhancement PROGRESSIVE Dual-Branch feature Fusion
在线阅读 下载PDF
Research on Crop Image Classification and Recognition Based on Improved HRNet
8
作者 Min Ji Shucheng Yang 《Computers, Materials & Continua》 2025年第8期3075-3103,共29页
In agricultural production,crop images are commonly used for the classification and identification of various crops.However,several challenges arise,including low image clarity,elevated noise levels,low accuracy,and p... In agricultural production,crop images are commonly used for the classification and identification of various crops.However,several challenges arise,including low image clarity,elevated noise levels,low accuracy,and poor robustness of existing classification models.To address these issues,this research proposes an innovative crop image classification model named Lap-FEHRNet,which integrates a Laplacian Pyramid Super Resolution Network(LapSRN)with a feature enhancement high-resolution network based on attention mechanisms(FEHRNet).To mitigate noise interference,this research incorporates the LapSRN network,which utilizes a Laplacian pyramid structure to extract multi-level feature details from low-resolution images through a systematic layer-by-layer amplification and pixel detail superposition process.This gradual reconstruction enhances the high-frequency information of the image,enabling super-resolution reconstruction of low-quality images.To obtain a broader range of comprehensive and diverse features,this research employs the FEHRNetmodel for both deep and shallow feature extraction.This approach results in features that encapsulate multi-scale information and integrate both deep and shallow insights.To effectively fuse these complementary features,this research introduces an attention mechanism during the feature enhancement stage.This mechanism highlights important regions within the image,assigning greater weights to salient features and resulting in a more comprehensive and effective image feature representation.Consequently,the accuracy of image classification is significantly improved.Experimental results demonstrate that the Lap-FEHRNetmodel achieves impressive classification accuracies of 98.8%on the crop classification dataset and 98.57%on the rice leaf disease dataset,underscoring the model’s outstanding accuracy,robustness,and generalization capability. 展开更多
关键词 Image reconstruction deep and shallow features feature enhancement LapSRN HRNet
在线阅读 下载PDF
SMNDNet for Multiple Types of Deepfake Image Detection
9
作者 Qin Wang Xiaofeng Wang +3 位作者 Jianghua Li Ruidong Han Zinian Liu Mingtao Guo 《Computers, Materials & Continua》 2025年第6期4607-4621,共15页
The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technol... The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technology.Therefore,in this study,we propose a novel algorithm,StereoMixture Density Network(SMNDNet),which can detect multiple types of deepfake face manipulations using a single network framework.SMNDNet is an end-to-end CNNbased network specially designed for detecting various manipulation types of deepfake face images.First,we design a Subtle Distinguishable Feature Enhancement Module to emphasize the differentiation between authentic and forged features.Second,we introduce aMulti-Scale Forged Region AdaptiveModule that dynamically adapts to extract forged features from images of varying synthesis scales.Third,we integrate a Nonlinear Expression Capability Enhancement Module to augment the model’s capacity for capturing intricate nonlinear patterns across various types of deepfakes.Collectively,these modules empower our model to efficiently extract forgery features fromdiverse manipulation types,ensuring a more satisfactory performance in multiple-types deepfake detection.Experiments show that the proposed method outperforms alternative approaches in detection accuracy and AUC across all four types of deepfake images.It also demonstrates strong generalization on cross-dataset and cross-type detection,along with robust performance against post-processing manipulations. 展开更多
关键词 Convolutional neural network deepfake detection generative adversarial network feature enhancement
在线阅读 下载PDF
HIET:Hybrid Information Enhancement Transformer Network for Single-Photon Image Reconstruction
10
作者 Yiming Liu Xuri Yao +2 位作者 Tao Zhang Yifei Sun Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期1-17,共17页
Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face sev... Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information. 展开更多
关键词 single-photon images hybrid information enhancement structual feature enhancement data simulation pipeline
在线阅读 下载PDF
Diff-IDS:A Network Intrusion Detection Model Based on Diffusion Model for Imbalanced Data Samples
11
作者 Yue Yang Xiangyan Tang +3 位作者 Zhaowu Liu Jieren Cheng Haozhe Fang Cunyi Zhang 《Computers, Materials & Continua》 2025年第3期4389-4408,共20页
With the rapid development of Internet of Things technology,the sharp increase in network devices and their inherent security vulnerabilities present a stark contrast,bringing unprecedented challenges to the field of ... With the rapid development of Internet of Things technology,the sharp increase in network devices and their inherent security vulnerabilities present a stark contrast,bringing unprecedented challenges to the field of network security,especially in identifying malicious attacks.However,due to the uneven distribution of network traffic data,particularly the imbalance between attack traffic and normal traffic,as well as the imbalance between minority class attacks and majority class attacks,traditional machine learning detection algorithms have significant limitations when dealing with sparse network traffic data.To effectively tackle this challenge,we have designed a lightweight intrusion detection model based on diffusion mechanisms,named Diff-IDS,with the core objective of enhancing the model’s efficiency in parsing complex network traffic features,thereby significantly improving its detection speed and training efficiency.The model begins by finely filtering network traffic features and converting them into grayscale images,while also employing image-flipping techniques for data augmentation.Subsequently,these preprocessed images are fed into a diffusion model based on the Unet architecture for training.Once the model is trained,we fix the weights of the Unet network and propose a feature enhancement algorithm based on feature masking to further boost the model’s expressiveness.Finally,we devise an end-to-end lightweight detection strategy to streamline the model,enabling efficient lightweight detection of imbalanced samples.Our method has been subjected to multiple experimental tests on renowned network intrusion detection benchmarks,including CICIDS 2017,KDD 99,and NSL-KDD.The experimental results indicate that Diff-IDS leads in terms of detection accuracy,training efficiency,and lightweight metrics compared to the current state-of-the-art models,demonstrating exceptional detection capabilities and robustness. 展开更多
关键词 Network traffic feature enhancement diffusion model multi-classification Algorithm 2(continued)13:end for 14:Return y
在线阅读 下载PDF
Feature Enhanced Stacked Auto Encoder for Diseases Detection in Brain MRI 被引量:1
12
作者 Umair Muneer Butt Rimsha Arif +2 位作者 Sukumar Letchmunan Babur Hayat Malik Muhammad Adil Butt 《Computers, Materials & Continua》 SCIE EI 2023年第8期2551-2570,共20页
The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)... The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes. 展开更多
关键词 Brain diseases deep learning feature enhanced stacked auto encoder stack auto encoder
在线阅读 下载PDF
Traffic Scene Captioning with Multi-Stage Feature Enhancement
13
作者 Dehai Zhang Yu Ma +3 位作者 Qing Liu Haoxing Wang Anquan Ren Jiashu Liang 《Computers, Materials & Continua》 SCIE EI 2023年第9期2901-2920,共20页
Traffic scene captioning technology automatically generates one or more sentences to describe the content of traffic scenes by analyzing the content of the input traffic scene images,ensuring road safety while providi... Traffic scene captioning technology automatically generates one or more sentences to describe the content of traffic scenes by analyzing the content of the input traffic scene images,ensuring road safety while providing an important decision-making function for sustainable transportation.In order to provide a comprehensive and reasonable description of complex traffic scenes,a traffic scene semantic captioningmodel withmulti-stage feature enhancement is proposed in this paper.In general,the model follows an encoder-decoder structure.First,multilevel granularity visual features are used for feature enhancement during the encoding process,which enables the model to learn more detailed content in the traffic scene image.Second,the scene knowledge graph is applied to the decoding process,and the semantic features provided by the scene knowledge graph are used to enhance the features learned by the decoder again,so that themodel can learn the attributes of objects in the traffic scene and the relationships between objects to generate more reasonable captions.This paper reports extensive experiments on the challenging MS-COCO dataset,evaluated by five standard automatic evaluation metrics,and the results show that the proposed model has improved significantly in all metrics compared with the state-of-the-art methods,especially achieving a score of 129.0 on the CIDEr-D evaluation metric,which also indicates that the proposed model can effectively provide a more reasonable and comprehensive description of the traffic scene. 展开更多
关键词 Traffic scene captioning sustainable transportation feature enhancement encoder-decoder structure multi-level granularity scene knowledge graph
在线阅读 下载PDF
DFE-GCN: Dual Feature Enhanced Graph Convolutional Network for Controversy Detection
14
作者 Chengfei Hua Wenzhong Yang +3 位作者 Liejun Wang Fuyuan Wei KeZiErBieKe HaiLaTi Yuanyuan Liao 《Computers, Materials & Continua》 SCIE EI 2023年第10期893-909,共17页
With the development of social media and the prevalence of mobile devices,an increasing number of people tend to use social media platforms to express their opinions and attitudes,leading to many online controversies.... With the development of social media and the prevalence of mobile devices,an increasing number of people tend to use social media platforms to express their opinions and attitudes,leading to many online controversies.These online controversies can severely threaten social stability,making automatic detection of controversies particularly necessary.Most controversy detection methods currently focus on mining features from text semantics and propagation structures.However,these methods have two drawbacks:1)limited ability to capture structural features and failure to learn deeper structural features,and 2)neglecting the influence of topic information and ineffective utilization of topic features.In light of these phenomena,this paper proposes a social media controversy detection method called Dual Feature Enhanced Graph Convolutional Network(DFE-GCN).This method explores structural information at different scales from global and local perspectives to capture deeper structural features,enhancing the expressive power of structural features.Furthermore,to strengthen the influence of topic information,this paper utilizes attention mechanisms to enhance topic features after each graph convolutional layer,effectively using topic information.We validated our method on two different public datasets,and the experimental results demonstrate that our method achieves state-of-the-art performance compared to baseline methods.On the Weibo and Reddit datasets,the accuracy is improved by 5.92%and 3.32%,respectively,and the F1 score is improved by 1.99%and 2.17%,demonstrating the positive impact of enhanced structural features and topic features on controversy detection. 展开更多
关键词 Controversy detection graph convolutional network feature enhancement social media
在线阅读 下载PDF
Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
15
作者 Hai-Tao Jia Bo-Yang Zhang +4 位作者 Chao Huang Wen-Han Li Wen-Bo Xu Yu-Feng Bi Li Ren 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期44-54,共11页
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ... At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively. 展开更多
关键词 feature information enhancement Graph neural network Natural language processing Sparse knowledge graph(KG)inference
在线阅读 下载PDF
Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques
16
作者 R.Radha R.Gopalakrishnan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3113-3127,共15页
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective... In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images. 展开更多
关键词 Enhanced local binary pattern LEVEL iGrab cut method magnetic resonance image computer aided diagnostic system enhanced feature fusion segmentation enhanced local binary pattern
在线阅读 下载PDF
Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure,Laser Spectrum Bandwidth and Central Frequency
17
作者 程文静 梁果 +3 位作者 吴萍 贾天卿 孙真荣 张诗按 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期41-45,共5页
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control... The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications. 展开更多
关键词 TL Coherent features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure Laser Spectrum Bandwidth and Central Frequency
原文传递
RHCrackNet:Refined Hierarchical Feature Fusion and Enhancement Network for Pixel-Level Pavement Anomaly Detection
18
作者 Wenjing Liu Zhenhua Li +1 位作者 Ji Wang Qingjie Lu 《Big Data Mining and Analytics》 2025年第4期880-896,共17页
Accurate and automatic detection of pavement anomaly is critical for damage assessment and pavements maintainence.While existing Convolutional Neural Network(CNN)approaches have achieved high performance,their robustn... Accurate and automatic detection of pavement anomaly is critical for damage assessment and pavements maintainence.While existing Convolutional Neural Network(CNN)approaches have achieved high performance,their robustness to texture noise is limited,and the completeness of detected pixel-level cracks remains uncertain due to insufficient extraction of contextual information.To address these limitations,we propose a novel pavement anomaly detection network called RHCrackNet.This model incorporates feature fusion modules and feature enhancement modules to dynamically aggregate high-level semantic features with low-level detail features and enhance them through attention mechanisms.In addition,a non-local attention module is introduced to learn long-range dependencies and improve the connectivity of detected subtle cracks.To further enhance performance,auxiliary structure loss and direction loss are developed for supervised training.Experimental results show that RHCrackNet is highly competitive with state-of-the-art methods on six real-world datasets and has good generalization capabilities. 展开更多
关键词 Convolutional Neural Network(CNN) anomaly detection feature fusion feature enhancement non-local attention
原文传递
Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement
19
作者 Shuai REN Hao GONG Suya ZHENG 《Frontiers of Information Technology & Electronic Engineering》 2025年第1期62-78,共17页
Three-dimensional (3D) point cloud information hiding algorithms are mainly concentrated in the spatialdomain. Existing spatial domain steganalysis algorithms are subject to more disturbing factors during the analysis... Three-dimensional (3D) point cloud information hiding algorithms are mainly concentrated in the spatialdomain. Existing spatial domain steganalysis algorithms are subject to more disturbing factors during the analysisand detection process, and can only be applied to 3D mesh objects, so there is a lack of steganalysis algorithms for 3Dpoint cloud objects. To change the fact that steganalysis is limited to 3D mesh and eliminate the redundant featuresin the 3D mesh steganalysis feature set, we propose a 3D point cloud steganalysis algorithm based on compositeoperator feature enhancement. First, the 3D point cloud is normalized and smoothed. Second, the feature pointsthat may contain secret information in 3D point clouds and their neighboring points are extracted as the featureenhancement region by the improved 3DHarris-ISS composite operator. Feature enhancement is performed in thefeature enhancement region to form a feature-enhanced 3D point cloud, which highlights the feature points whilesuppressing the interference created by the rest of the vertices. Third, the existing 3D mesh feature set is screenedto reduce the data redundancy of more relevant features, and the newly proposed local neighborhood feature setis added to the screened feature set to form the 3D point cloud steganography feature set POINT72. Finally,the steganographic features are extracted from the enhanced 3D point cloud using the POINT72 feature set, andsteganalysis experiments are carried out. Experimental analysis shows that the algorithm can accurately analyzethe 3D point cloud’s spatial steganography and determine whether the 3D point cloud contains hidden information,so the accuracy of 3D point cloud steganalysis, under the prerequisite of missing edge and face information, is closeto that of the existing 3D mesh steganalysis algorithms. 展开更多
关键词 STEGANALYSIS 3D point cloud feature enhancement feature set filtering
原文传递
多尺度特征图分类再提取的目标检测算法 被引量:11
20
作者 尹震宇 樊超 +2 位作者 赵志浩 黄哲 张飞青 《小型微型计算机系统》 CSCD 北大核心 2021年第3期536-541,共6页
为提高SSD算法检测目标的能力,提出了一种对多尺度特征图进行分类再提取的目标检测算法.该算法将SSD特征金字塔中多个不同尺度的特征图分为低层和高层两类特征图.针对低层特征图所处位置网络深度不够导致的特征表示能力不足,设计了SFE(S... 为提高SSD算法检测目标的能力,提出了一种对多尺度特征图进行分类再提取的目标检测算法.该算法将SSD特征金字塔中多个不同尺度的特征图分为低层和高层两类特征图.针对低层特征图所处位置网络深度不够导致的特征表示能力不足,设计了SFE(Shallow Feature Enhancement)模块提取特征从而增加网络深度,最终提高对小目标的检测能力;高层特征图采用两段反卷积的方式,将更深层提取的语义信息融入特征图,从而提高对中等目标和大目标的检测能力.同时提出了减弱反卷积棋盘格效应的回流式反卷积的方法.在Pascal VOC 2007测试集上进行验证后的结果表明,本文算法的mAP值达到了79.6%,相比SSD算法提高了2.4%. 展开更多
关键词 目标检测 SSD shallow feature enhancement(SFE) 反卷积
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部