It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance...It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.展开更多
An experimental model for simulating the corrosion of carbon steel fasteners(bolt and nut) composed of a contact carbon steel electrode(CCSE) and an exposed bare carbon steel plate electrode(BCSE) was designed. The ef...An experimental model for simulating the corrosion of carbon steel fasteners(bolt and nut) composed of a contact carbon steel electrode(CCSE) and an exposed bare carbon steel plate electrode(BCSE) was designed. The effect of coupling on the corrosion process of the galvanically coupled carbon steel electrode was evaluated and compared with the self-corrosion process observed independently at the exposed and contact regions. Results obtained indicated that at an equal area ratio and uncoupled conditions, the corrosion rate is accelerated in the surface directly exposed to bulk solution compared to the bolt surface in contact with the nut. A coupling current was recorded when the exposed surface(BCSE) was electrically connected with the contact surface(CCSE);with the CCSE acting as the anode thereby suppressing the corrosion process in the exposed surface. By implication, the galvanic coupling between CCSE and BCSE increased the corrosion rate of CCSE. The diff erence in oxygen supply was responsible for the coupling effect observed in the system as there was no decrease in the solution pH. Moreover, varying the cathode-to-anode area( S c/S a) ratio significantly influenced the corrosion current density as increased S c/S a ratio resulted in an accelerated galvanic corrosion process. The corroded surfaces and interfaces were analysed using stereomicroscopy and scanning electron microscopy. X-ray diff ractometry was adopted for corrosion product characterization. The results obtained showed supportive evidence of the corrosion behaviour in carbon steel fasteners.展开更多
Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload...Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload can cause loosening,fatigue fracture,and other problems.This will affect the safety and reliability of mechanical equipment.The precise control of the preload has become a critical issue in mechanical assembly processes.Over the past few decades,various tightening measures and methods have been proposed to address this issue.However,many problems continue to exist with practical applications that have not been reviewed comprehensively and systematically.First,various control methods were summarized systematically,and their advantages and disadvantages in engineering applications were analyzed.Torque control is the most widely used tightening method owing to its simple operation and low cost.Therefore,the research on the torque control method was summarized systematically from three aspects:the torque-preload correlation formula,effective friction radius,and friction characteristics during tightening.In addition,the special circumstances that may increase preload uncertainty were discussed.Finally,based on a summary of the current research status,the prospects for future research were discussed.This study would aid researchers in extensively understanding the problems in preload control.展开更多
The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicle...The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.展开更多
Carbon fiber reinforced polymer composites (CFRP) have been applied to aerospace and automobile structures. For many CFRP structures, mechanical metallic fasteners are usually adopted. For the fasteners used in intern...Carbon fiber reinforced polymer composites (CFRP) have been applied to aerospace and automobile structures. For many CFRP structures, mechanical metallic fasteners are usually adopted. For the fasteners used in internal structures such as a wing box, the damage to the CFRP structures around fastener holes is visually quite difficult to find. A simple method to find the damage around fastener holes is required. In this study a self-sensing time domain reflectometry (TDR) method is newly applied to detect bearing failure around the fastener holes of CFRP structures. A microstrip-line method is generally used to create a transmission line. When the transmission line is mounted near the metallic fasteners, they may affect the impedance of the transmission line. In this study, the effect of distance between the fasteners and the transmission line was numerically investigated using a finite difference time domain analysis method. After finding the appropriate distance, experiments were performed to detect the bearing failure around a fastener hole. The experiments showed the performance of the self-sensing TDR for detecting bearing failure.展开更多
A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of...A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of eight vehicles coupled with a ballasted track. The vehicle is modeled as a multi-body system, and the rail is modeled with a Timoshenko beam resting on the discrete sleepers. The vehicle model considers the effect of the end connections of the neighboring vehicles on the dynamic behavior. The track model takes into account the lateral, vertical, and torsional deformations of the rails and the effect of the discrete sleeper support on the coupling dynamics of the vehicles and the track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. The train model couples with the track model by using a Hertzian contact model for the wheel/rail normal force calculation, and the nonlinear creep theory by Shen et al. (1984) is used for wheel/rail tangent force calculation. In the analysis, a curved track of 7000-m radius with failed fasteners is selected, and the effects of train operational speed and the number of failed fasteners on the dynamic behaviors of the train and the track are investigated in detail. Furthermore, the wheel/rail forces and derailment coefficient and the wheelset loading reduction are analyzed when the high-speed train passes over the curved track with the different number of continuously failed fasteners at different operational speeds. Through the detailed numerical analysis, it is found that the high-speed train can operate normally on the curved track of 7000-m radius at the speeds of 200 km/h to 350 km/h.展开更多
This study investigated the characteristics of corrosion products formed on the contact and exposed re-gions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments.The corroded sur-face morphol...This study investigated the characteristics of corrosion products formed on the contact and exposed re-gions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments.The corroded sur-face morphology,rust compositions,and corrosion kinetics of the bolt specimen were studied by visual observation,optical microscopy(OM),scanning electron microscopy(SEM),X-Ray diffractometry(XRD),micro-Raman,electron probe micro-analyser(EPMA),and potentiodynamic polarization techniques.Re-sults obtained showed a variation in corrosion kinetics,morphology,and composition of the rust layer which were driven by differential aeration and concentration effects.Due to the availability of sufficient dissolved oxygen,the oxyhydroxide compound,lepidocrocite(γ-FeOOH)was detected in the outer rust layer in the exposed region,whereas the inner rust layer was composed of magnetite(Fe_(3)O_(4)).How-ever,the oxygen-deficient contact surface revealed the presence of akaganeite(β-FeOOH)and magnetite(Fe_(3)O_(4))as dominant oxide phases.The most stable phase,goethite(α-FeOOH)was also detected in the rust formed in both regions,though in significantly low amounts.Furthermore,owing to variation in environmental conditions,the amount and density of the rust layer varied in the different regions.The estimated corrosion stability values for the different regions revealed that the corrosion products formed on the steel surfaces were non-protective,suggesting the need for specific surface treatment as a protec-tive measure.展开更多
With tremendous weight saving potential,magnesium alloy high pressure die casting components have been widely used for automotive applications.Magnesium fastening technology is thus becoming increasingly important to ...With tremendous weight saving potential,magnesium alloy high pressure die casting components have been widely used for automotive applications.Magnesium fastening technology is thus becoming increasingly important to design engineers.Joining as-cast holes of magnesium high pressure die casting components with thread forming fasteners provides significant advantages for the assembly process,overall cost benefit and joint integrity.This type of joint is thus preferred for structural applications.Designing the thread forming fasteners with as-cast holes follows the general rules for designing for the machined holes,including carefully designing the variables such as the assembly torque range,the length of thread engagement,the hole diameter and required failure mode.In addition,special attention needs to be paid to the draft angles of the magnesium cast components that are required for the die casting process.In this paper,the effects of above key factors,individually and combined,on the joint performance of thread forming fasteners with as-cast blind holes of AM60B magnesium components are studied.A joint design philosophy was proposed to optimize both joint performance(the prevailing torque,the failure torque and the failure mode)and manufacturing easiness(the hole diameter and corresponding draft angle).The detailed design considerations for as-cast holes of magnesium HPDC are discussed and explained through a hypothetical example.展开更多
In order to characterize the mechanical behaviors of the Velcro~? and Dual-lock fasteners, a series of tests including the butt-joint(BJ) monotonic tensile and shear, mixed tensile-shear with various loading angles, t...In order to characterize the mechanical behaviors of the Velcro~? and Dual-lock fasteners, a series of tests including the butt-joint(BJ) monotonic tensile and shear, mixed tensile-shear with various loading angles, the loading rates effects, the double cantilever beam(DCB) fracture and 180° peel experiments were performed. The tensile and shear tests results showed that the mechanical behaviors of Velcro~? fastener separation are analogous to ductile materials, and those of Dual-lock fasteners are more like brittle ones. The mixed tensile-shear with various loading angles tests results demonstrated that magnitudes of the peak stresses in 30°, 45°, and 60° have no significant differences, which are lower than those in the monotonic tensile or shear tests for the two fasteners. The effects of the loading rate tests show that the peak stresses of the Velcro~? fastener manifested good performance at the loading rate of 10 to 20 mm/min in the tensile and shear conditions, and the Dual-lock did it well around the loading rates of 10 to 20 mm/min in the tensile condition. The cohesive zone model(CZM) is employed to numerical predict the DCB fracture and the 180° peel tests. The CZM predictions results are proven to commendably capture the two tests separation processes, of the tow fasteners, and the numerical results agreed well with the peeling tests data of the Dual lock fasteners. The results and discussions in this study are expected to bring more understanding to engineers and designers about the performance of Velcro~? and Dual lock fasteners.展开更多
Mechanical fastening is widely used in joining metals, particularly in automotive, aerospace, building and construction industries. However, the main concern on mechanical fastening is the issue of corrosion. An effec...Mechanical fastening is widely used in joining metals, particularly in automotive, aerospace, building and construction industries. However, the main concern on mechanical fastening is the issue of corrosion. An effective way to prolong the service life of steel fasteners is to apply protective coatings onto these components. This paper reviews and compares a few common coating deposition techniques, i.e., electroplating, hot-dip galvanizing, ion vapour deposition and mechanical plating, in terms of their characteristics. Compositional and microstructural properties including morphology and porosity, corrosion resistance performance and frictional performance of the coatings formed by each process are discussed in details. Hydrogen embrittlement, a premature failure often occurred on high strength steel fasteners, is also reviewed. The key results of recent studies of various metallic coatings on fasteners are presented to provide a fundamental understanding of the evolving topics, and the research gaps have been identified for further investigation.展开更多
Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous...Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous scholars have conducted research on the loosening of threaded fasteners;however,comprehensive reviews on the loosening of threaded fasteners have been scarce.In this review article,we define loosening as a loss of preload and divide it into non-rotational and rotational loosening.The causes and mechanisms of non-rotational and rotational loosening are summarised.Some essential topics regarding loosening under transverse vibration have also attracted significant attention and have been investigated widely,including the loosening curve,critical condition of loosening,and influencing factors of loosening.The research carried out on these three topics is also summarised in this review.It is believed that our work will not only help new researchers quickly understand the state-of-the-art research on loosening,but also increase the knowledge of engineers on this critical subject.In the future,it is important to conduct more quantitative research on local slippage accumulation,and the relationship between local slippage accumulation and rotational loosening,which will have the potential to comprehensively unravel the loosening mechanism,and effectively guide the anti-loosening design of threaded fasteners.展开更多
This paper investigates the self-loosening of threaded fasteners subjected to dynamic shear load. Three kinds of typical coatings, PTFE, MoS_2, and TiN applied to bolts and nuts, are tested in this investigation. The ...This paper investigates the self-loosening of threaded fasteners subjected to dynamic shear load. Three kinds of typical coatings, PTFE, MoS_2, and TiN applied to bolts and nuts, are tested in this investigation. The study experimentally examines the loosening mechanisms of fasteners and assesses the anti-loosening performance of the three tested coatings based on their tightening characteristics, loosening curves, and the damage of thread surface. Additionally, the anti-loosening performance of the three coatings is compared under different load forms. The results indicate that the PTFE and MoS_2 coatings have significant anti-loosening effect, whereas the anti-loosening performance of Ti N coating is not satisfactory. It is also found that an appropriate increase of the initial tightening torque can significantly improve the anti-loosening effect. In addition, the microscopic analyses of PTFE and MoS2 coating reveal that a reduced initial tightening torque leads to fretting wear on the thread contact surfaces of fasteners, thereby aggravating the damage.展开更多
GH4350(AEREX 350)is a Ni-based wrought superalloy for high-performance fasteners,with a maximum service temperature of 750℃.It has high tensile strength,fatigue resistance,stress rupture and relaxation resistance,cor...GH4350(AEREX 350)is a Ni-based wrought superalloy for high-performance fasteners,with a maximum service temperature of 750℃.It has high tensile strength,fatigue resistance,stress rupture and relaxation resistance,corrosion resistance,low thermal expansion,and notch sensitivity.The high strength of GH4350 is largely derived through solid solution strengthening and the γ′phase precipitation strengthening.During the precipitation of γ′phase,a minor amount ofηphase also precipitates.However,it is reported that the microstructure of alloy is sensitive to heat treatment parameters,including temperature and time.The γ′phases can be transformed intoηphases under certain conditions,potentially degrading the performance of the alloy.The chemical composition characteristics,heat treatment strategies,and strengthening mechanism of GH4350 were reviewed in this research,aiming to understand the factors behind its remarkable high-temperature performance,to guide the development of new alloys,and to further enhance its heat resistance.展开更多
High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar ...High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar caps-web attachments, more cracks are initiated and grow from the edges of the fastener holes than from features like fillets radii and corners or from large access holes. The main causes of this cracking are the stress concentrations introduced by the fastener holes and by the threaded fasteners themselves, with the most common damage site being at the edge of the fastener holes. Intuitively, it is easy to visualize that after the crack initiation, during the growth stages, some of the load transferred initially by the fastener at the cracked hole will decrease, and it will be shed to the adjacent fasteners that will carry higher loads than in uncracked condition. Using currently available computer software, the method presented in this paper provides a relatively quick and quantitatively defined solution to account for the effects of crack length on the fastener loads transfer, and on the far field and bypass loads at each fastener adjacent to the crack. At each location, these variations are determined from the 3-dimensional distribution of stresses in the joint, and accounting for secondary bending effects and fastener tilt. Two cases of a typical skins lap splice with eight fasteners in a two rows configuration loaded in tension are presented and discussed, one representative for wing or fuselage skins configurations, and the second case representative for cost effective laboratory testing. Each case presents five cracking scenarios, with the cracks growing from approx. 0.03 inch to either the free edge, next hole or both simultaneously.展开更多
Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions.However,unsupervised anomaly detection methods based o...Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions.However,unsupervised anomaly detection methods based on diffusion models reduce the dependence on the number of anomalous samples but suffer from too many iterations and excessive smoothing of reconstructed images.In this work,we have established a rail fastener anomaly detection framework called Diff-Fastener,the diffusion model is introduced into the fastener detection task,half of the normal samples are converted into anomaly samples online in the model training stage,and One-Step denoising and canonical guided denoising paradigms are used instead of iterative denoising to improve the reconstruction efficiency of the model while solving the problem of excessive smoothing.DACM(Dilated Attention Convolution Module)is proposed in the middle layer of the reconstruction network to increase the detail information of the reconstructed image;meanwhile,Sparse-Skip connections are used instead of dense connections to reduce the computational load of themodel and enhance its scalability.Through exhaustive experiments onMVTec,VisA,and railroad fastener datasets,the results show that Diff-Fastener achieves 99.1%Image AUROC(Area Under the Receiver Operating Characteristic)and 98.9%Pixel AUROC on the railroad fastener dataset,which outperforms the existing models and achieves the best average score on MVTec and VisA datasets.Our research provides new ideas and directions in the field of anomaly detection for rail fasteners.展开更多
The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measu...The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measured by X-ray diffraction method. Fatigue experiments of specimens with and without LSP were performed, and the microstructural features of fracture of specimens were characterized by scanning electron microscopy (SEM). The results indicate that the compressive residual stress can be induced into the surface of specimen, and the fatigue life of the specimen with LSP is 3.5 times as long as that of specimen without LSP. The location of fatigue crack initiation is transferred from the top surface to the sub-surface after LSP, and the fatigue striation spacing of the treated specimen during the expanding fatigue crack is narrower than that of the untreated specimen. Furthermore, the diameters of the dimples on the fatigue crack rupture zone of the specimen with LSP are relatively bigger, which is related to the serious plastic deformation in the material with LSP.展开更多
Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Bas...Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.展开更多
Image detection based on machine learning and deep learning currently has a good application prospect for railway fault diagnosis,with good performance in feature extraction and the accuracy of image localization and ...Image detection based on machine learning and deep learning currently has a good application prospect for railway fault diagnosis,with good performance in feature extraction and the accuracy of image localization and good classification results.To improve the speed of locating small target objects of fasteners,the YOLOv5 framework model with faster algorithm speed is selected.To improve the classification accuracy of fasteners,YOLOv5-based heavy-duty railway rail fastener detection is proposed.The anchor size is modified on the original basis to improve the attention to small targets of fasteners.The CBAM(Convolutional Block Attention Module)module and TPH(Transformer Prediction Head)module are introduced to improve the speed and accuracy issues.The rail fasteners are divided into 6 categories.Experiment comparisons show that before the improvement,the MAP@0.5 value of all categories are close to the peak of 0.989 after the epoch of 150,and the F1 score approaches 1 with confidence in the interval(0.2,0.95).The improved mAP@0.5 value approached the highest value of 0.991 after the epoch of 75,and the F1 score approached 1 with confidence in the interval(0.01,0.95).The experiment results indicate that the improved YOLOv5 model proposed in this paper is more suitable for the task of detecting rail fasteners.展开更多
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by International Cooperative Scientific Research Platform of SUES,China。
文摘It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.
基金financially supported by the National Natural Science Foundation of China(No.51801219)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019193,KGFZD-135-19-02)the National Key Research Development Program of China(No.2017YFB0702302)。
文摘An experimental model for simulating the corrosion of carbon steel fasteners(bolt and nut) composed of a contact carbon steel electrode(CCSE) and an exposed bare carbon steel plate electrode(BCSE) was designed. The effect of coupling on the corrosion process of the galvanically coupled carbon steel electrode was evaluated and compared with the self-corrosion process observed independently at the exposed and contact regions. Results obtained indicated that at an equal area ratio and uncoupled conditions, the corrosion rate is accelerated in the surface directly exposed to bulk solution compared to the bolt surface in contact with the nut. A coupling current was recorded when the exposed surface(BCSE) was electrically connected with the contact surface(CCSE);with the CCSE acting as the anode thereby suppressing the corrosion process in the exposed surface. By implication, the galvanic coupling between CCSE and BCSE increased the corrosion rate of CCSE. The diff erence in oxygen supply was responsible for the coupling effect observed in the system as there was no decrease in the solution pH. Moreover, varying the cathode-to-anode area( S c/S a) ratio significantly influenced the corrosion current density as increased S c/S a ratio resulted in an accelerated galvanic corrosion process. The corroded surfaces and interfaces were analysed using stereomicroscopy and scanning electron microscopy. X-ray diff ractometry was adopted for corrosion product characterization. The results obtained showed supportive evidence of the corrosion behaviour in carbon steel fasteners.
基金Supported by National Natural Science Foundation of China(Grant Nos.U23B20104,52075012 and 52205510).
文摘Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload can cause loosening,fatigue fracture,and other problems.This will affect the safety and reliability of mechanical equipment.The precise control of the preload has become a critical issue in mechanical assembly processes.Over the past few decades,various tightening measures and methods have been proposed to address this issue.However,many problems continue to exist with practical applications that have not been reviewed comprehensively and systematically.First,various control methods were summarized systematically,and their advantages and disadvantages in engineering applications were analyzed.Torque control is the most widely used tightening method owing to its simple operation and low cost.Therefore,the research on the torque control method was summarized systematically from three aspects:the torque-preload correlation formula,effective friction radius,and friction characteristics during tightening.In addition,the special circumstances that may increase preload uncertainty were discussed.Finally,based on a summary of the current research status,the prospects for future research were discussed.This study would aid researchers in extensively understanding the problems in preload control.
文摘The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.
文摘Carbon fiber reinforced polymer composites (CFRP) have been applied to aerospace and automobile structures. For many CFRP structures, mechanical metallic fasteners are usually adopted. For the fasteners used in internal structures such as a wing box, the damage to the CFRP structures around fastener holes is visually quite difficult to find. A simple method to find the damage around fastener holes is required. In this study a self-sensing time domain reflectometry (TDR) method is newly applied to detect bearing failure around the fastener holes of CFRP structures. A microstrip-line method is generally used to create a transmission line. When the transmission line is mounted near the metallic fasteners, they may affect the impedance of the transmission line. In this study, the effect of distance between the fasteners and the transmission line was numerically investigated using a finite difference time domain analysis method. After finding the appropriate distance, experiments were performed to detect the bearing failure around a fastener hole. The experiments showed the performance of the self-sensing TDR for detecting bearing failure.
基金Project supported by the National Natural Science Foundation of China (No. U1134202)the National Basic Research Program (973) of China (No. 2011CB711103)the Program for Changjiang Scholars and Innovative Research Team in University (Nos. IRT1178and SWJTU12ZT01), China
文摘A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of eight vehicles coupled with a ballasted track. The vehicle is modeled as a multi-body system, and the rail is modeled with a Timoshenko beam resting on the discrete sleepers. The vehicle model considers the effect of the end connections of the neighboring vehicles on the dynamic behavior. The track model takes into account the lateral, vertical, and torsional deformations of the rails and the effect of the discrete sleeper support on the coupling dynamics of the vehicles and the track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. The train model couples with the track model by using a Hertzian contact model for the wheel/rail normal force calculation, and the nonlinear creep theory by Shen et al. (1984) is used for wheel/rail tangent force calculation. In the analysis, a curved track of 7000-m radius with failed fasteners is selected, and the effects of train operational speed and the number of failed fasteners on the dynamic behaviors of the train and the track are investigated in detail. Furthermore, the wheel/rail forces and derailment coefficient and the wheelset loading reduction are analyzed when the high-speed train passes over the curved track with the different number of continuously failed fasteners at different operational speeds. Through the detailed numerical analysis, it is found that the high-speed train can operate normally on the curved track of 7000-m radius at the speeds of 200 km/h to 350 km/h.
基金This work was financially supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019193,KGFZD-135-19-02)the National Natural Science Foundation of China(No.51801219).Special appreciation to the CAS-TWAS Presidential Fellowship for sponsorship.
文摘This study investigated the characteristics of corrosion products formed on the contact and exposed re-gions of C1045 steel bolt and nut fasteners exposed to aqueous chloride environments.The corroded sur-face morphology,rust compositions,and corrosion kinetics of the bolt specimen were studied by visual observation,optical microscopy(OM),scanning electron microscopy(SEM),X-Ray diffractometry(XRD),micro-Raman,electron probe micro-analyser(EPMA),and potentiodynamic polarization techniques.Re-sults obtained showed a variation in corrosion kinetics,morphology,and composition of the rust layer which were driven by differential aeration and concentration effects.Due to the availability of sufficient dissolved oxygen,the oxyhydroxide compound,lepidocrocite(γ-FeOOH)was detected in the outer rust layer in the exposed region,whereas the inner rust layer was composed of magnetite(Fe_(3)O_(4)).How-ever,the oxygen-deficient contact surface revealed the presence of akaganeite(β-FeOOH)and magnetite(Fe_(3)O_(4))as dominant oxide phases.The most stable phase,goethite(α-FeOOH)was also detected in the rust formed in both regions,though in significantly low amounts.Furthermore,owing to variation in environmental conditions,the amount and density of the rust layer varied in the different regions.The estimated corrosion stability values for the different regions revealed that the corrosion products formed on the steel surfaces were non-protective,suggesting the need for specific surface treatment as a protec-tive measure.
文摘With tremendous weight saving potential,magnesium alloy high pressure die casting components have been widely used for automotive applications.Magnesium fastening technology is thus becoming increasingly important to design engineers.Joining as-cast holes of magnesium high pressure die casting components with thread forming fasteners provides significant advantages for the assembly process,overall cost benefit and joint integrity.This type of joint is thus preferred for structural applications.Designing the thread forming fasteners with as-cast holes follows the general rules for designing for the machined holes,including carefully designing the variables such as the assembly torque range,the length of thread engagement,the hole diameter and required failure mode.In addition,special attention needs to be paid to the draft angles of the magnesium cast components that are required for the die casting process.In this paper,the effects of above key factors,individually and combined,on the joint performance of thread forming fasteners with as-cast blind holes of AM60B magnesium components are studied.A joint design philosophy was proposed to optimize both joint performance(the prevailing torque,the failure torque and the failure mode)and manufacturing easiness(the hole diameter and corresponding draft angle).The detailed design considerations for as-cast holes of magnesium HPDC are discussed and explained through a hypothetical example.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.10972200 and 11172270)
文摘In order to characterize the mechanical behaviors of the Velcro~? and Dual-lock fasteners, a series of tests including the butt-joint(BJ) monotonic tensile and shear, mixed tensile-shear with various loading angles, the loading rates effects, the double cantilever beam(DCB) fracture and 180° peel experiments were performed. The tensile and shear tests results showed that the mechanical behaviors of Velcro~? fastener separation are analogous to ductile materials, and those of Dual-lock fasteners are more like brittle ones. The mixed tensile-shear with various loading angles tests results demonstrated that magnitudes of the peak stresses in 30°, 45°, and 60° have no significant differences, which are lower than those in the monotonic tensile or shear tests for the two fasteners. The effects of the loading rate tests show that the peak stresses of the Velcro~? fastener manifested good performance at the loading rate of 10 to 20 mm/min in the tensile and shear conditions, and the Dual-lock did it well around the loading rates of 10 to 20 mm/min in the tensile condition. The cohesive zone model(CZM) is employed to numerical predict the DCB fracture and the 180° peel tests. The CZM predictions results are proven to commendably capture the two tests separation processes, of the tow fasteners, and the numerical results agreed well with the peeling tests data of the Dual lock fasteners. The results and discussions in this study are expected to bring more understanding to engineers and designers about the performance of Velcro~? and Dual lock fasteners.
文摘Mechanical fastening is widely used in joining metals, particularly in automotive, aerospace, building and construction industries. However, the main concern on mechanical fastening is the issue of corrosion. An effective way to prolong the service life of steel fasteners is to apply protective coatings onto these components. This paper reviews and compares a few common coating deposition techniques, i.e., electroplating, hot-dip galvanizing, ion vapour deposition and mechanical plating, in terms of their characteristics. Compositional and microstructural properties including morphology and porosity, corrosion resistance performance and frictional performance of the coatings formed by each process are discussed in details. Hydrogen embrittlement, a premature failure often occurred on high strength steel fasteners, is also reviewed. The key results of recent studies of various metallic coatings on fasteners are presented to provide a fundamental understanding of the evolving topics, and the research gaps have been identified for further investigation.
基金The authors are grateful for support by the National Natural Science Foundation of China(Nos.51935003 and 51675050)the National Defense Fundamental Research Foundation of China(No.JCKY2016204B201)。
文摘Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous scholars have conducted research on the loosening of threaded fasteners;however,comprehensive reviews on the loosening of threaded fasteners have been scarce.In this review article,we define loosening as a loss of preload and divide it into non-rotational and rotational loosening.The causes and mechanisms of non-rotational and rotational loosening are summarised.Some essential topics regarding loosening under transverse vibration have also attracted significant attention and have been investigated widely,including the loosening curve,critical condition of loosening,and influencing factors of loosening.The research carried out on these three topics is also summarised in this review.It is believed that our work will not only help new researchers quickly understand the state-of-the-art research on loosening,but also increase the knowledge of engineers on this critical subject.In the future,it is important to conduct more quantitative research on local slippage accumulation,and the relationship between local slippage accumulation and rotational loosening,which will have the potential to comprehensively unravel the loosening mechanism,and effectively guide the anti-loosening design of threaded fasteners.
基金the financial support provided by the National Science Funds for Distinguished Young Scholars(No.51025519)the Changjiang Scholarships and Innovation Team Development Plan(No.IRT1178)the Self-Topic Fund of Traction Power State Key Laboratory(No.2016TPL-Z03)
文摘This paper investigates the self-loosening of threaded fasteners subjected to dynamic shear load. Three kinds of typical coatings, PTFE, MoS_2, and TiN applied to bolts and nuts, are tested in this investigation. The study experimentally examines the loosening mechanisms of fasteners and assesses the anti-loosening performance of the three tested coatings based on their tightening characteristics, loosening curves, and the damage of thread surface. Additionally, the anti-loosening performance of the three coatings is compared under different load forms. The results indicate that the PTFE and MoS_2 coatings have significant anti-loosening effect, whereas the anti-loosening performance of Ti N coating is not satisfactory. It is also found that an appropriate increase of the initial tightening torque can significantly improve the anti-loosening effect. In addition, the microscopic analyses of PTFE and MoS2 coating reveal that a reduced initial tightening torque leads to fretting wear on the thread contact surfaces of fasteners, thereby aggravating the damage.
文摘GH4350(AEREX 350)is a Ni-based wrought superalloy for high-performance fasteners,with a maximum service temperature of 750℃.It has high tensile strength,fatigue resistance,stress rupture and relaxation resistance,corrosion resistance,low thermal expansion,and notch sensitivity.The high strength of GH4350 is largely derived through solid solution strengthening and the γ′phase precipitation strengthening.During the precipitation of γ′phase,a minor amount ofηphase also precipitates.However,it is reported that the microstructure of alloy is sensitive to heat treatment parameters,including temperature and time.The γ′phases can be transformed intoηphases under certain conditions,potentially degrading the performance of the alloy.The chemical composition characteristics,heat treatment strategies,and strengthening mechanism of GH4350 were reviewed in this research,aiming to understand the factors behind its remarkable high-temperature performance,to guide the development of new alloys,and to further enhance its heat resistance.
文摘High strength threaded fasteners are widely used in the aircraft industry, and service experience shows that for structures where shear loading of the joints is significant, like skin splices, fuselage joints or spar caps-web attachments, more cracks are initiated and grow from the edges of the fastener holes than from features like fillets radii and corners or from large access holes. The main causes of this cracking are the stress concentrations introduced by the fastener holes and by the threaded fasteners themselves, with the most common damage site being at the edge of the fastener holes. Intuitively, it is easy to visualize that after the crack initiation, during the growth stages, some of the load transferred initially by the fastener at the cracked hole will decrease, and it will be shed to the adjacent fasteners that will carry higher loads than in uncracked condition. Using currently available computer software, the method presented in this paper provides a relatively quick and quantitatively defined solution to account for the effects of crack length on the fastener loads transfer, and on the far field and bypass loads at each fastener adjacent to the crack. At each location, these variations are determined from the 3-dimensional distribution of stresses in the joint, and accounting for secondary bending effects and fastener tilt. Two cases of a typical skins lap splice with eight fasteners in a two rows configuration loaded in tension are presented and discussed, one representative for wing or fuselage skins configurations, and the second case representative for cost effective laboratory testing. Each case presents five cracking scenarios, with the cracks growing from approx. 0.03 inch to either the free edge, next hole or both simultaneously.
基金funded by the National Natural Science Foundation of China,grant number 52272385 and 52475085.
文摘Supervised learning-based rail fastener anomaly detection models are limited by the scarcity of anomaly samples and perform poorly under data imbalance conditions.However,unsupervised anomaly detection methods based on diffusion models reduce the dependence on the number of anomalous samples but suffer from too many iterations and excessive smoothing of reconstructed images.In this work,we have established a rail fastener anomaly detection framework called Diff-Fastener,the diffusion model is introduced into the fastener detection task,half of the normal samples are converted into anomaly samples online in the model training stage,and One-Step denoising and canonical guided denoising paradigms are used instead of iterative denoising to improve the reconstruction efficiency of the model while solving the problem of excessive smoothing.DACM(Dilated Attention Convolution Module)is proposed in the middle layer of the reconstruction network to increase the detail information of the reconstructed image;meanwhile,Sparse-Skip connections are used instead of dense connections to reduce the computational load of themodel and enhance its scalability.Through exhaustive experiments onMVTec,VisA,and railroad fastener datasets,the results show that Diff-Fastener achieves 99.1%Image AUROC(Area Under the Receiver Operating Characteristic)and 98.9%Pixel AUROC on the railroad fastener dataset,which outperforms the existing models and achieves the best average score on MVTec and VisA datasets.Our research provides new ideas and directions in the field of anomaly detection for rail fasteners.
基金Project (51175002) supported by the National Natural Science Foundation of ChinaProject (090414156) supported by the Natural Science Foundation of Anhui Province,China
文摘The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measured by X-ray diffraction method. Fatigue experiments of specimens with and without LSP were performed, and the microstructural features of fracture of specimens were characterized by scanning electron microscopy (SEM). The results indicate that the compressive residual stress can be induced into the surface of specimen, and the fatigue life of the specimen with LSP is 3.5 times as long as that of specimen without LSP. The location of fatigue crack initiation is transferred from the top surface to the sub-surface after LSP, and the fatigue striation spacing of the treated specimen during the expanding fatigue crack is narrower than that of the untreated specimen. Furthermore, the diameters of the dimples on the fatigue crack rupture zone of the specimen with LSP are relatively bigger, which is related to the serious plastic deformation in the material with LSP.
基金Projects(50908232, 51108460) supported by the National Natural Science Foundation of China
文摘Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.
基金supported by the National Key R&D Program of China(Grant 2021YFF0501102)National Natural Science Foundation of China(Grant U1934219)+1 种基金National Science Fund for Excellent Young Scholars(Grant 52022010)National Natural Science Foundation of China(Grant 52202392,Grant 62120106011).
文摘Image detection based on machine learning and deep learning currently has a good application prospect for railway fault diagnosis,with good performance in feature extraction and the accuracy of image localization and good classification results.To improve the speed of locating small target objects of fasteners,the YOLOv5 framework model with faster algorithm speed is selected.To improve the classification accuracy of fasteners,YOLOv5-based heavy-duty railway rail fastener detection is proposed.The anchor size is modified on the original basis to improve the attention to small targets of fasteners.The CBAM(Convolutional Block Attention Module)module and TPH(Transformer Prediction Head)module are introduced to improve the speed and accuracy issues.The rail fasteners are divided into 6 categories.Experiment comparisons show that before the improvement,the MAP@0.5 value of all categories are close to the peak of 0.989 after the epoch of 150,and the F1 score approaches 1 with confidence in the interval(0.2,0.95).The improved mAP@0.5 value approached the highest value of 0.991 after the epoch of 75,and the F1 score approached 1 with confidence in the interval(0.01,0.95).The experiment results indicate that the improved YOLOv5 model proposed in this paper is more suitable for the task of detecting rail fasteners.