Using the nonequilibrium Green's function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculate...Using the nonequilibrium Green's function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculated.The evolution of the conductance strongly depends on the configuration of dot levels and interdot coupling strengths.展开更多
Using the nonequilibrium Keldysh Green's function technique, the Fano effect of a parallel-coupled triple Rashba quantum dot system is investigated. The conductance as a function of electron energy is numerically cal...Using the nonequilibrium Keldysh Green's function technique, the Fano effect of a parallel-coupled triple Rashba quantum dot system is investigated. The conductance as a function of electron energy is numerically calculated. Compared with the case of a parallel-coupled double quantum dot system, two additional Fano resonance peaks occur in the conductance spectrum. By adjusting the structural parameters, the two Fano resonance peaks may change into the resoaance peaks. In addition, the influence of Rashba spin-orbit interaction on the conductance is studied.展开更多
A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If ...A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the I-V characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots.展开更多
Using an equation-of-motion technique, we theoretically study the Fano-Kondo effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of state...Using an equation-of-motion technique, we theoretically study the Fano-Kondo effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system with both parallel and antiparaIlel lead-polarization alignments, and our results reveal that the interdot coupling, the spin-polarized strength and the energy level of the side coupled quantum dot greatly influence the density of states of the central quantum dot. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.展开更多
Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the infl...Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.展开更多
We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spec...We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from 0 to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.展开更多
We report capacitive coupling induced Kondo–Fano(K–F) interference in a double quantum dot(DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluat...We report capacitive coupling induced Kondo–Fano(K–F) interference in a double quantum dot(DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluations. We show that the interdot capacitive coupling U12 splits the singly-occupied(S-O) state in quantum dot 1(QD1) into three quasi-particle substates: the unshifted S-O0 substate, and elevated S-O1 and S-O2. As U12 increases, S-O2 and S-O1 successively cross through the Kondo resonance state at the Fermi level(ω = 0), resulting in the so-called Kondo-I(KI), K–F, and Kondo-II(KII) regimes. While both the KI and KII regimes have the conventional Kondo resonance properties, remarkable Kondo–Fano interference features are shown in the K–F regime. In the view of scattering, we propose that the phase shift η(ω)is suitable for analysis of the Kondo–Fano interference. We present a general approach for calculating η(ω) and applying it to the DQD in the K–F regime where the two maxima of η(ω = 0) characterize the interferences between the Kondo resonance state and S-O2 and S-O1 substates, respectively.展开更多
Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N--QD-S system, the AR can be enh...Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N--QD-S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD-MBS coupling or MBS-MBS coupling. The AR conductance is always e2/2h at the zero Fermi energy point when only QD--MBSs coupling is considered. In addition, the resonant AR occurs when the MBS-MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD-MBS coupling and the MBS-MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.展开更多
We investigate the electronic transport properties of the single-impurity Anderson model. By employing the cluster expansions, the equations of motion of Green's functions are transformed into the corresponding equat...We investigate the electronic transport properties of the single-impurity Anderson model. By employing the cluster expansions, the equations of motion of Green's functions are transformed into the corresponding equation of motion of connected Green's functions, which contains the correlation of two conduction electrons beyond the Lacroix approximation. With the method we show that the asymmetric line shape of zero bias conductance manifests itself as the Fano effect, and the Kondo effect is observed in the narrow peak of differential conductance curve of the system. The Fano and the Kondo effects can coexist in the single-impurity Anderson model when the impurity level is adjusted to an appropriate position.展开更多
This paper investigates the electronic transport properties in an Aharonov Bohm interferometer with a quantum dot coupling to left and right electrodes. By employing cluster expansions, it transforms the equations of ...This paper investigates the electronic transport properties in an Aharonov Bohm interferometer with a quantum dot coupling to left and right electrodes. By employing cluster expansions, it transforms the equations of motion of Green's functions into the corresponding equation of motion of connected Green's functions, which provides a natural and uniform truncation scheme. With this method under the Lacroix's truncation approximation, it shows that the asymmetric line shape of zero bias conductance manifests itself as the Fano effect, and the Kondo effect has been observed in the narrow peak of differential conductance curve of the system. Our numerical results also show that the building of Fano state suppresses the amplitude of Kondo resonance.展开更多
With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probab...With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probability characterized by the Mgebraic sum φ and the difference θ of two magnetic fluxes, and particularly a general rule of AB oscillation period depending on the ratio of integer quantum numbers of the fluxes. A parity effect is observed, showing the asymmetric AB oscillations with respect to the even and odd quantum numbers of the total flux in antiparallel AB interferometers. It is also shown that the AB flux can shift the Fano resonance peaks of the transmission spectrum.展开更多
基金Project supported by the Youth Foundation of Heilongjiang Province,China (Grant No. QC2009C41)the Heilongjiang Provincial Natural Science Foundation,China (Grant No. F200939)
文摘Using the nonequilibrium Green's function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculated.The evolution of the conductance strongly depends on the configuration of dot levels and interdot coupling strengths.
基金supported by the Youth Foundation of Heilongjiang Province,China(Grant No.QC2009C41)the Heilongjiang Provincial Natural Science Foundation,China(Grant No.F200939)
文摘Using the nonequilibrium Keldysh Green's function technique, the Fano effect of a parallel-coupled triple Rashba quantum dot system is investigated. The conductance as a function of electron energy is numerically calculated. Compared with the case of a parallel-coupled double quantum dot system, two additional Fano resonance peaks occur in the conductance spectrum. By adjusting the structural parameters, the two Fano resonance peaks may change into the resoaance peaks. In addition, the influence of Rashba spin-orbit interaction on the conductance is studied.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11447132 and 11504042the Chongqing Science and Technology Commission Project under Grant Nos cstc2014jcyj A00032 and cstc2016jcyj A1158the Scientific Research Project for Advanced Talents of Yangtze Normal University under Grant No 2017KYQD09
文摘A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the I-V characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots.
基金supported by the Scientific Research Funds of Education Department of Sichuan Province (Grant No 2006A069)the Major Basic Research Project of Sichuan Province (Grant No 2006J13-155)the Scientific Research Innovation for Postgraduates of Sichuan Normal University
文摘Using an equation-of-motion technique, we theoretically study the Fano-Kondo effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system with both parallel and antiparaIlel lead-polarization alignments, and our results reveal that the interdot coupling, the spin-polarized strength and the energy level of the side coupled quantum dot greatly influence the density of states of the central quantum dot. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.
基金Supported by the National Natural Science Foundation of China under Grant No 21673296the Science and technology Plan of Hunan Province under Grant No 2015RS4002the Hunan Provincial Natural Science Foundation under Grant No 2017JJ3063
文摘Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.
基金supported by the National Natural Science Foundation of China (Grant Nos 10475053,10775091 and 10774094)the Shanxi Natural Science Foundation,China (Grant No 20051002)
文摘We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from 0 to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.
基金National Natural Science Foundation of China(Grant Nos.11774418,11374363,and 21373191).
文摘We report capacitive coupling induced Kondo–Fano(K–F) interference in a double quantum dot(DQD) by systematically investigating its low-temperature properties on the basis of hierarchical equations of motion evaluations. We show that the interdot capacitive coupling U12 splits the singly-occupied(S-O) state in quantum dot 1(QD1) into three quasi-particle substates: the unshifted S-O0 substate, and elevated S-O1 and S-O2. As U12 increases, S-O2 and S-O1 successively cross through the Kondo resonance state at the Fermi level(ω = 0), resulting in the so-called Kondo-I(KI), K–F, and Kondo-II(KII) regimes. While both the KI and KII regimes have the conventional Kondo resonance properties, remarkable Kondo–Fano interference features are shown in the K–F regime. In the view of scattering, we propose that the phase shift η(ω)is suitable for analysis of the Kondo–Fano interference. We present a general approach for calculating η(ω) and applying it to the DQD in the K–F regime where the two maxima of η(ω = 0) characterize the interferences between the Kondo resonance state and S-O2 and S-O1 substates, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176089 and 10974043)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2011205092 and 2014205005)the Fund for Hebei Normal University for Nationalities,China(Grant No.201109)
文摘Andreev reflection (AR) in a normal-metal/quantum-dot/superconductor (N-QD-S) system with coupled Majorana bound states (MBSs) is investigated theoretically. We find that in the N--QD-S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD-MBS coupling or MBS-MBS coupling. The AR conductance is always e2/2h at the zero Fermi energy point when only QD--MBSs coupling is considered. In addition, the resonant AR occurs when the MBS-MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD-MBS coupling and the MBS-MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375039 and 90503008), the Doctoral Fund of Ministry of Education of China, and the Center of Theoretical Nuclear Physics of Heavy Ion Facilities of Lanzhou of China.
文摘We investigate the electronic transport properties of the single-impurity Anderson model. By employing the cluster expansions, the equations of motion of Green's functions are transformed into the corresponding equation of motion of connected Green's functions, which contains the correlation of two conduction electrons beyond the Lacroix approximation. With the method we show that the asymmetric line shape of zero bias conductance manifests itself as the Fano effect, and the Kondo effect is observed in the narrow peak of differential conductance curve of the system. The Fano and the Kondo effects can coexist in the single-impurity Anderson model when the impurity level is adjusted to an appropriate position.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375039 and 90503008), the Doctoral Fund of Ministry of Education of China, and partly by the Center of Theoretical Nuclear Physics of Heavy Ion Research Facilities of Lanzhou of China.
文摘This paper investigates the electronic transport properties in an Aharonov Bohm interferometer with a quantum dot coupling to left and right electrodes. By employing cluster expansions, it transforms the equations of motion of Green's functions into the corresponding equation of motion of connected Green's functions, which provides a natural and uniform truncation scheme. With this method under the Lacroix's truncation approximation, it shows that the asymmetric line shape of zero bias conductance manifests itself as the Fano effect, and the Kondo effect has been observed in the narrow peak of differential conductance curve of the system. Our numerical results also show that the building of Fano state suppresses the amplitude of Kondo resonance.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475053).
文摘With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probability characterized by the Mgebraic sum φ and the difference θ of two magnetic fluxes, and particularly a general rule of AB oscillation period depending on the ratio of integer quantum numbers of the fluxes. A parity effect is observed, showing the asymmetric AB oscillations with respect to the even and odd quantum numbers of the total flux in antiparallel AB interferometers. It is also shown that the AB flux can shift the Fano resonance peaks of the transmission spectrum.