Metabolic reprogramming involving branched-chain amino acids(BCAAs)—leucine,isoleucine,and valine—is increasingly recognized as pivotal in cancer progression,metastasis,and immune modulation.This review comprehensiv...Metabolic reprogramming involving branched-chain amino acids(BCAAs)—leucine,isoleucine,and valine—is increasingly recognized as pivotal in cancer progression,metastasis,and immune modulation.This review comprehensively explores how cancer cells rewire BCAA metabolism to enhance proliferation,survival,and therapy resistance.Tumors manipulate BCAA uptake and catabolism via high expression of transporters like L-type amino acid transporter 1(LAT1)and enzymes including branched chain amino acid transaminase 1(BCAT1),branched chain amino acid transaminase 2(BCAT2),branched-chain alpha-keto acid dehydrogenase(BCKDH),and branched chain alpha-keto acid dehydrogenase kinase(BCKDK).These alterations sustain energy production,biosynthesis,redox homeostasis,and oncogenic signaling(especially mammalian target of rapamycin complex 1[mTORC1]).Crucially,tumor-driven BCAA depletion also shapes an immunosuppressive microenvironment,impairing anti-tumor immunity by limiting essential nutrients for T cells and natural killer(NK)cells.Innovative therapeutic strategies targeting BCAA pathways—ranging from selective small-molecule inhibitors(e.g.,LAT1 and BCAT1/2)to dietary modulation—have shown promising preclinical and early clinical efficacy,highlighting their potential to exploit metabolic vulnerabilities in cancer cells while bolstering immune responses.By integrating multi-omics data and precision targeting approaches,this review underscores the translational significance of BCAA metabolic reprogramming,positioning it as a novel frontier in cancer treatment.展开更多
Prolonged lack of rain and high-temperature lead to soil water deficits,inhibiting cereal crop growth in early ontogenesis and reducing grain quality and yield.Rye(Secale cereale L.)is a key grain crop,particularly in...Prolonged lack of rain and high-temperature lead to soil water deficits,inhibiting cereal crop growth in early ontogenesis and reducing grain quality and yield.Rye(Secale cereale L.)is a key grain crop,particularly in regions where wheat cultivation is challenging or unfeasible.To clarify its drought adaptation mechanisms,we analyzed the effects of moderate soil drought on growth,hormonal homeostasis,and the dynamics and distribution of free amino acids and phenolic compounds in rye at early vegetative stages and post-recovery.Drought triggered both general and organ-specific changes in endogenous phytohormones.A nonspecific response involved the accumulation of stress hormones abscisic acid(ABA)and salicylic acid(SA),alongside the suppression of growth hormones indole-3-acetic acid(IAA)and gibberellins.However,hormone dynamics and localization varied across plant organs.ABA and SA levels significantly increased in shoots of drought-stressed and recovered plants,corresponding with inhibited growth.Prolonged drought further enhanced ABA accumulation in both shoots and roots of recovered plants,while SA levels declined in roots but remained elevated in shoots.Drought also caused a substantial reduction in IAA,particularly in shoots,while gibberellins(GA_(3)+GA_(4))significantly decreased in roots.GA_(3)was predominant in most samples,except in the shoots of 2-day-old control plants.Post-recovery,IAA levels increased but remained below control values,while GA_(4)accumulation in roots led to a rise in total gibberellin levels.In contrast,shoot GA_(3)+GA_(4)levels declined,primarily due to GA_(3)reduction.The dominant free amino acids:aspartic acid,glutamic acid,glycine,alanine,and leucinedecreased significantly,underscoring their key role in stress adaptation.Increased flavonoid accumulation,especially in roots,suggests their involvement in antioxidant defense against oxidative stress.A significant increase in ABA and SA levels,along with a marked reduction in IAA and GA content in stressed rye plants occurred alongside a reduction in free amino acid content,accumulation of phenolic compounds,and an increase in flavonoid levels.These findings indicate distinct adaptation strategies in rye shoots and roots undermoderate soil drought.They provide a foundation for further research on drought resistance mechanisms in cereals and the development of strategies to enhance their adaptive potential.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ...The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.展开更多
The amino acid contents of five floral sources Chinese honeys(jujube, rape, chaste, acacia, and lungan) were measured using reversed phase high-performance liquid chromatography(RP-HPLC). The results showed that proli...The amino acid contents of five floral sources Chinese honeys(jujube, rape, chaste, acacia, and lungan) were measured using reversed phase high-performance liquid chromatography(RP-HPLC). The results showed that proline was the main amino acid in most of the analyzed samples. Phenylalanine presents at the highest content in chaste honey samples, and the total amino acid contents of chaste honeys were also significantly higher than those of other honey samples. Based on the amino acid contents, honey samples were classified using chemometric methods(cluster analysis(CA), principal component analysis(PCA), and discriminant analysis(DA)). According to the CA results, chaste honeys could be separated from other honeys, while the remaining samples were correctly grouped together when the chaste honey data were excluded. By using DA, the overall correct classification rate reached 100%. The results revealed that amino acid contents could potentially be used as indicators to identify the botanical origin of unifloral honeys.展开更多
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
Background: The current study was carried out to determine effects of dietary protein source and crude protein(CP)level on carcass characteristics, meat quality, and muscle amino acid(AA) profile in finishing gil...Background: The current study was carried out to determine effects of dietary protein source and crude protein(CP)level on carcass characteristics, meat quality, and muscle amino acid(AA) profile in finishing gilts. The experiment was designed as a 2 × 2 factorial arrangement with two sources of dietary proteins(cottonseed meal, CSM vs. soybean meal, SBM) and two levels of CP(12 % vs. 14 %, as-fed basis). Seventy-two crossbred gilts(89.5 ± 0.9 kg) were allotted to one of four dietary treatments in a randomized complete block design for a period of 28 d. All diets were formulated to be isoenergetic and similar concentrations of standardized ileal digestible essential AA covering the nutrient requirements of pigs.Results: Growth, carcass characteristics and meat quality were not affected by dietary protein source nor crude protein level(P > 0.10) except that average daily feed intake was increased by CSM diets(P = 0.03). Gilts offered reduced protein diets had lower muscle p H45min(P 〈 0.05). Neither dietary protein source nor crude protein level influenced N deposition. However, reduced protein diets decreased N intake, N excretion, and serum urea nitrogen content, whilst improved N efficiency(P 〈 0.01). CSM diets increased N intake(P = 0.04),but did not depress N efficiency. The concentrations of phenylalanine, tryptophan, cysteine and tyrosine(P 〈 0.05) of the longissimus muscle were decreased when gilts offered CSM diets, while muscle intracellular free valine concentration was increased(P = 0.03). The gilts offered reduced protein diets had greater intracellular concentrations of free methionine, lysine, and total AA in muscle(P 〈 0.05).Conclusion: These results suggest that CSM could replace SBM as a primary protein source in finishing pig diets in terms of performance, N efficiency, carcass characteristics, and meat quality, but decrease the concentrations of muscle specific AA. Furthermore, the reduced protein diet played an important role in increasing muscle intracellular concentrations of specific free amino acids(FAA), and in reducing the relative ratios of specific FAA to lysine in longissimus dorsi muscle of pig, whose biological meaning needs further studies.展开更多
The protective effect and mechanism of diazepam on ischemia neurons during cerebral ischemia and reperfusion were studied. Sixty three Wistar rats were divided randomly into nine groups: control group , ischemia gro...The protective effect and mechanism of diazepam on ischemia neurons during cerebral ischemia and reperfusion were studied. Sixty three Wistar rats were divided randomly into nine groups: control group , ischemia groups including subgroups of is3h, is3 h/rep1 h, is3 h/rep2 h, is3 h/rep3 h, diazepam treated groups , including subgroups of is3 h, is3 h/rep1 h, is3 h/rep2 h, is3 h/rep3 h with Zea longa's animal model of middle cerebral artery occlusion. The comparison between the ischemia group and diazepam treated group showed that diazepam could obviously decrease the production of glutamate, asparate, MDA and increase the synthesis and release of GABA, SOD and GSH PX. It was concluded that diazepam exerted its protective effects on neurons through complex mechanisms of regulating the synthesis and release of excitotary/inhibitory amino acids and free radicals.展开更多
This paper describes a reliable and rapid method for the complete separation and quantitation of twenty-five amino acids typically found in plants, based on reversed phase high-performance liquid chromatography–linke...This paper describes a reliable and rapid method for the complete separation and quantitation of twenty-five amino acids typically found in plants, based on reversed phase high-performance liquid chromatography–linked fluorescence detector using a 150×4.6 mm Zorbax Eclipse AAA column. Plant tissue free amino acids(FAA)were extracted by ultrasonication with 5%(v/v) aqueous trifluoroacetic acid followed by ultrafiltration of extracts.The following analysis of amino acids was performed through programmed precolumn derivatization with orthophthalaldehyde and 9-fluorenylmethyl chloroformate reagents and efficient elution of derivatives within 26 min using binary gradient scheme. The method was validated over a concentration range of 4.5–450 μmol L^(-1)(μM).Separation analysis showed good selectivity(resolution>1.5) for most amino acids. The average repeatability(RSD%, relative standard deviation) of the analysis at seven calibration concentrations was below 4% and ranged from 1.13% to 12.04%. The intra-day mean coefficient of variation at two concentrations(22.5 and 90 μM) was within 2%, and the intermediate precision was less than 4%. The limits of detection were between 0.012 and 6.68 μM. The coefficients of determination(R2) of the linear calibration curves were from 0.9989 to 0.9999.When the method was applied to plant samples, the FAA recoveries at two spiked levels(25 and 100 μM) ranged from 67.0% to 108.9% with an average of 94.4%, and the precision was 0.26%–12.31% RSD. A specific application combining this method with optimized extraction and interference removal procedures was successfully used to determine the FAA pools in different plant tissues. Finally,a PLS-DA multivariate statistics model was validated for the classification of three plant species according to their FAA profiles.展开更多
Using microbial fermentation to increase the content of free amino acids and short peptides in the organic fertilizer for castor bean meal can effectively promote plant growth and improve fruit quality.Using free amin...Using microbial fermentation to increase the content of free amino acids and short peptides in the organic fertilizer for castor bean meal can effectively promote plant growth and improve fruit quality.Using free amino acid and short peptide content as an indicator,through single factor and response surface optimization experiments,the process parameters(moisture content,fermentation time and inoculum quantity)of castor meal solid-state fermentation were optimized.The best process parameters for the solid-state fermentation were:the moisture content 62%,the fermentation time 20 d,and the inoculum quantity 0.23%.The moisture content had the greatest impact on the conversion rate of free amino acids and short peptides,and the protein conversion rate reached 65.6%.The scale-up experiment under the optimal conditions showed that the solid-state fermentation using the inoculum had a significant beneficial effect compared with other fermentation methods.The fermentation of castor cake fertilizer provides a theoretical and practical basis for production feasibility,and has important guiding significance for the effective utilization of castor bean meal.展开更多
The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column der...The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column derivatization of o-phthalaldehyde.Results show that the average concentration of DFAA in the study area was 0.47±0.36μmol/L.In different sampling stations,the concentrations of DFAA with water depth showed complex variation patterns.At the sediment-seawater interface,the concentrations of DFAA in the western side of the trench were obviously higher than that in its eastern side.In the study area,there were no significant correlations between the concentrations of DFAA and the environmental parameters such as concentrations of chlorophyll a(Chl a),dissolved oxygen(DO),pH,and dissolved inorganic nitrogen(DIN),indicating that the concentrations of DFAA in seawater of the trench are affected by many factors,such as photosynthesis,respiration,temperature,pressure,illumination,and circulation.The dominant DFAA are similar in different water layers of sampling stations,including aspartic acid(Asp),glutamic acid(Glu),glycine(Gly),and serine(Ser).The composition of different amino acids,and the relative abundance of acidic,basic,and neutral amino acids might be related to the sources and consumption of various amino acids.Nine pairs of amino acids in the DFAA showed significantly positive relationship by correlation matrix analysis,suggesting that they might share similar biogeochemical processes.The degradation index(DI)of the DFAA in seawater of the Yap Trench could reflect the degradation,source,and freshness of DFAA in the trench to some extents.This is a preliminary study of amino acids from sea surface to hadal zone in the ocean,more works shall be done in different trenches to reveal their biogeochemical characte ristics in extreme marine environme nts.展开更多
Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The conte...Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The content of glycogen was high in January and March (2.89 and 2.82 g(100 g) ^-1 on average, respectively) and low in October (2.07g(100g)^- 1 on average). The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g( 100 g)^- 1 on average). The main fatty acids of oyster were palmitic acid (16:0), oleic acid (18: 1), eicosapentaenoic acid (EPA, 20: 5(0 3) and docosahexaenoic acid (DHA, 22:6(0 3). The major FAAs of oyster were Taurine, Glutamicacid, Glycin, Alanine, Arginine and Proline. Taurine was the most abundant FAA with its content ranging from 603 mg(100 g) ^-1 to 1 139 mg( 100 g) ^-1. The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.展开更多
AIM: To perform plasma free amino acid (PFAA) profiling of esophageal squamous cell carcinoma (ESCC) patients at different pathological stages and healthy subjects.
Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects ...Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects of inoculation with different starter cultures(Lactiplantibacillus plantarum HN108 and Staphylococcus simulans NJ209)on the free amino acids(FAAs),biogenic amines(BAs)and volatile compounds of fermented sausages were investigated using an amino acid analyzer,ultra performance liquid chromatography and gas chromatography-ion mobility spectrometry,respectively.The pH and carbonyl content of the inoculated group was significantly lower than those in the control group(P<0.05).L.plantarum HN108 significantly reduced the content of FAAs and BAs in fermented sausage production(P<0.05),while S.simulans NJ209 promoted the formation of FAAs(especially bitter amino acids)and exhibited slight BAs-reducing activity.In addition,L.plantarum HN108 promoted the formation of volatile compounds such as ketones,alcohols and alkenes in sausages.In conclusion,L.plantarum HN108 could contribute to reducing the content of putrescine and tyramine and forming the desirable flavor compounds in fermented sausages.Thus,L.plantarum HN108 is expected to be a starter culture that can improve the safety and flavor of fermented sausages.展开更多
Amino acids(AAs) are prevalent in source water, particularly during spring run-off. Monitoring of amino acids in source water is desirable for water treatment plants(WTP) to indicate changes in source water quality. T...Amino acids(AAs) are prevalent in source water, particularly during spring run-off. Monitoring of amino acids in source water is desirable for water treatment plants(WTP) to indicate changes in source water quality. The objective of this study was to establish analytical procedures for reliable monitoring of amino acids in source water. Therefore, we examined two different methods, large volume inject(LVI) and solid phase extraction(SPE), for sample preparation prior to HILIC-MS/MS. The LVI-HILIC-MS/MS method can provide fast and sensitive detection for clean samples, but suffers from matrix effects, resulting in irreproducible separation and shortening column lifetime. We have demonstrated that SPE was necessary prior to HILIC-MS/MS to achieve reproducible and reliable quantification of AAs in source water. A natural heterocyclic amine 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid(MTCCA) was also included in the method to indicate changes in other natural nitrogenous compounds in source water. The SPE-HILIC-MS/MS method was able to achieve limits of detection from 2.6-3400 ng/L for the amino acids and MTCCA with RSDs( n = 3) of 1.1%-4.8%. As well, retention times(RT) of the analytes were reproducible with variation less than 0.01 min( n = 3) through the entire project. We further applied the SPE-HILICMS/MS method to determine AAs in authentic source water samples collected from two drinking water treatment plants(WTPs) during the 2021 spring run-off season. The results support that the SPE-HILIC-MS/MS method does not require derivatization and can provide reliable, accurate, and robust analysis of AAs and MTCCA in source water, supporting future monitoring of source water quality.展开更多
Background The synchronized absorption of amino acids(AAs)and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body.The study investigated how the starch digestion rate and AA le...Background The synchronized absorption of amino acids(AAs)and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body.The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion,transport and metabolism,breast muscle protein metabolism,and growth in grower broilers.A total of 72021-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments,each with 6 replicates of 10 birds.The treatments comprised 3 different starch[corn:control,cassava:rapidly digestible starch(RDS),and pea:slowly digestible starch(SDS)]with 4 different AA levels[based on standardized ileal digestible lysine(SID Lys),0.92%,1.02%(as the standard),1.12%and 1.22%].Results An interaction between dietary starch sources and SID Lys levels significantly affected breast muscle yield(P=0.033).RDS and SDS diets,or SID Lys levels of 0.92%,1.02%,or 1.22%,significantly decreased the breast muscle yield of broilers in contrast to the corn starch diet with 1.12%SID Lys(P=0.033).The SID Lys levels of 1.12%and 1.22%markedly improved body weight(BW),body weight gain(BWG)from 22 to 42 days of age,and mRNA expression of y^(+)LAT1 and mTOR while reducing feed intake(FI)and feed/gain ratio(F/G)compared to the 0.92%SID Lys level(P<0.05).The SDS diet significantly decreased BW and BWG of broilers from 22 to 42 days of age,distal ileal starch digestibility,jejunal amylase and chymotrypsin activities,and mRNA expression of GLUT2 and y^(+)LAT1 compared to the corn starch diet(P<0.05).The RDS diet suppressed the breast muscle mass by down-regulating expression of mTOR,S6K1,and eIF4E and up-regulating expression of MuRF,CathepsinB,Atrogin-1,and M-calpain compared to the corn starch diet(P<0.05).Targeted metabolomics analysis revealed that the SDS diet significantly increased acetyl-CoA andα-ketoglutaric acid levels in the tricarboxylic acid(TCA)cycle(P<0.05)but decreased the ileal digestibility of Lys,Tyr,Leu,Asp,Ser,Gly,Pro,Arg,Ile,and Val compared to the corn starch group(P<0.05).Conclusion The SDS diet impaired broiler growth by reducing intestinal starch digestibility,which inhibited intestinal AA and glucose absorption and utilization,increased AA oxidation for energy supply,and lowered the efficiency of protein synthesis.Although the RDS diet resulted in growth performance similar to the corn starch diet,it reduced breast muscle mass by inhibiting protein synthesis and promoting degradation.展开更多
AIM: To determine the differences of amino acid(AA) levels in experimental autoimmune uveoretinitis(EAU). METHODS: AA analysis of the plasma samples in EAU rats induced by interphotoreceptor retinoid-binding protein e...AIM: To determine the differences of amino acid(AA) levels in experimental autoimmune uveoretinitis(EAU). METHODS: AA analysis of the plasma samples in EAU rats induced by interphotoreceptor retinoid-binding protein emulsion were performed with high performance liquid chromatography(HPLC) and phenylisothiocyanate(PITC) pre-column derivation methods were performed. Using partial least squares discriminant analysis(PLS-DA), the potential biomarkers were identified in EAU rat plasma, and the metabolic pathways related to EAU were further analyzed. RESULTS: The method results showed that linear(r≥0.9957), intra-day reproducible [relative standard deviation(RSD)=0.04%-1.33%], inter-day reproducible(RSD=0.06%-2.07%), repeatability(RSD=0.03%-0.89%), stability(RSD=0.05%-2.48%) and recovery(RSD=1.98%-4.39%), with detection limits of 0.853-11.4 ng/mL. The metabolic profile in EAU rats was different from that in the control groups five AAs concentrations were increased and nine AAs were reduced. Moreover, five metabolic pathways were related to the development of EAU. CONCLUSION: The developed method is a simple, rapid and convenient for determination of AAs in EAU rat plasma, and these findings will provide a comprehensiveinsight on the metabolic profiling of the pathological changes in EAU.展开更多
Two consecutive growth experiments with meat-type chickens (Ross 308) were conducted in order to quantify the age-dependent amino acid (AA) content in the whole body protein of male and female birds based on experimen...Two consecutive growth experiments with meat-type chickens (Ross 308) were conducted in order to quantify the age-dependent amino acid (AA) content in the whole body protein of male and female birds based on experimental data of the feather and feather-free body protein fractions. Birds were reared under uniform housing and feeding conditions (floor pens, 15 pens per gender, 5 birds per pen) during the starter (day 1 to 22) and grower period (day 22 to 36). Both the starter and grower diet based on corn, wheat, soybean meal, soybean protein concentrate and feed amino acids was formulated to ensure an equal feed protein quality close to the ideal amino acid ratio by adjusting a constant mixture of the feed proteins. At start of the experiment and further on weekly up to the end of the 5th week, 15 birds per gender (each 3 pens of 5 birds) were selected and fasted for 24 h, to emptying of gastro-intestinal tract, respectively. Subsequently, birds were euthanized and the feathers were manually removed. Nitrogen (N) and AA content were determined both in the feather and feather-free body fraction. The concentration of individual AAs in both of body protein fraction is varying considerably. Explicitly higher Cys, Ser and Pro but importantly lower Met, Lys and His concentrations were found in the feather protein. Furthermore, significant differences (p for nearly all AAs of the studied body protein fractions and the whole empty body protein dependent on age of birds were observed. Especially high deviations were obtained during the first week of age and at the end of the experiment. According to this observed variation of AA concentrations must be concluded that the body AA composition of meat-type chickens during growth is not constant. The detected gender-specific differences for several AAs in the feather and body protein of male and female birds were rather low and with very low variation.展开更多
Soy protein isolate and egg white protein were added to cassava-banana gluten-free pasta and the effects on the nutritional quality,digestibility properties,protein digestibility corrected amino acid(PDCAA),and sensor...Soy protein isolate and egg white protein were added to cassava-banana gluten-free pasta and the effects on the nutritional quality,digestibility properties,protein digestibility corrected amino acid(PDCAA),and sensory acceptance of the pasta was observed.Banana-cassava composite flour(75:25)was blended with soy protein isolate or egg white protein at the following rates:0,5,10,and 15 g/100 g flour.Cooked pasta samples were analysed for total phenolic content(TPC),antioxidant activity,amino acid profiles,protein content,starch digestibility,protein digestibility and protein digestibility corrected amino acid score(PDCAAS).Addition of both proteins decreased starch digestibility,increased protein digestibility,improved the balance of the amino acid profile,and PDCAAS whereas only soy protein isolate enhanced the TPC and antioxidant capacity of the banana-cassava pasta.An egg white protein-fortified banana-cassava pasta had better customer acceptance and purchase intent than soy protein isolate inclusion.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
基金supported by a grant from the Dalian Science and Technology Innovation Fund Program(No.2024JJ13PT070)United Foundation for Dalian Institute of Chemical Physics,Chinese Academy of Sciences and the Second Hospital of Dalian Medical University(No.DMU-2&DICP UN202410)Dalian Life and Health Field Guidance Program Project(No.2024ZDJH01PT084).
文摘Metabolic reprogramming involving branched-chain amino acids(BCAAs)—leucine,isoleucine,and valine—is increasingly recognized as pivotal in cancer progression,metastasis,and immune modulation.This review comprehensively explores how cancer cells rewire BCAA metabolism to enhance proliferation,survival,and therapy resistance.Tumors manipulate BCAA uptake and catabolism via high expression of transporters like L-type amino acid transporter 1(LAT1)and enzymes including branched chain amino acid transaminase 1(BCAT1),branched chain amino acid transaminase 2(BCAT2),branched-chain alpha-keto acid dehydrogenase(BCKDH),and branched chain alpha-keto acid dehydrogenase kinase(BCKDK).These alterations sustain energy production,biosynthesis,redox homeostasis,and oncogenic signaling(especially mammalian target of rapamycin complex 1[mTORC1]).Crucially,tumor-driven BCAA depletion also shapes an immunosuppressive microenvironment,impairing anti-tumor immunity by limiting essential nutrients for T cells and natural killer(NK)cells.Innovative therapeutic strategies targeting BCAA pathways—ranging from selective small-molecule inhibitors(e.g.,LAT1 and BCAT1/2)to dietary modulation—have shown promising preclinical and early clinical efficacy,highlighting their potential to exploit metabolic vulnerabilities in cancer cells while bolstering immune responses.By integrating multi-omics data and precision targeting approaches,this review underscores the translational significance of BCAA metabolic reprogramming,positioning it as a novel frontier in cancer treatment.
基金This publication presents findings from research conducted under Project No.III-99-24.489Natural Growth Regulators in the Induction of Resistance of Cereal Plants to HeavyMetals(2024-2028)funded by the NationalAcademy of Sciences of Ukraine.
文摘Prolonged lack of rain and high-temperature lead to soil water deficits,inhibiting cereal crop growth in early ontogenesis and reducing grain quality and yield.Rye(Secale cereale L.)is a key grain crop,particularly in regions where wheat cultivation is challenging or unfeasible.To clarify its drought adaptation mechanisms,we analyzed the effects of moderate soil drought on growth,hormonal homeostasis,and the dynamics and distribution of free amino acids and phenolic compounds in rye at early vegetative stages and post-recovery.Drought triggered both general and organ-specific changes in endogenous phytohormones.A nonspecific response involved the accumulation of stress hormones abscisic acid(ABA)and salicylic acid(SA),alongside the suppression of growth hormones indole-3-acetic acid(IAA)and gibberellins.However,hormone dynamics and localization varied across plant organs.ABA and SA levels significantly increased in shoots of drought-stressed and recovered plants,corresponding with inhibited growth.Prolonged drought further enhanced ABA accumulation in both shoots and roots of recovered plants,while SA levels declined in roots but remained elevated in shoots.Drought also caused a substantial reduction in IAA,particularly in shoots,while gibberellins(GA_(3)+GA_(4))significantly decreased in roots.GA_(3)was predominant in most samples,except in the shoots of 2-day-old control plants.Post-recovery,IAA levels increased but remained below control values,while GA_(4)accumulation in roots led to a rise in total gibberellin levels.In contrast,shoot GA_(3)+GA_(4)levels declined,primarily due to GA_(3)reduction.The dominant free amino acids:aspartic acid,glutamic acid,glycine,alanine,and leucinedecreased significantly,underscoring their key role in stress adaptation.Increased flavonoid accumulation,especially in roots,suggests their involvement in antioxidant defense against oxidative stress.A significant increase in ABA and SA levels,along with a marked reduction in IAA and GA content in stressed rye plants occurred alongside a reduction in free amino acid content,accumulation of phenolic compounds,and an increase in flavonoid levels.These findings indicate distinct adaptation strategies in rye shoots and roots undermoderate soil drought.They provide a foundation for further research on drought resistance mechanisms in cereals and the development of strategies to enhance their adaptive potential.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金supported by MICIU(grant number PID2021-128133NB-100/AEI/FEDER10.13039/501100011033 to JMHG)by the National Institutes of Health(grant number R01 NS083858 to SAK)+1 种基金the Intramural Grants Program IGPP00057(to SAK)VIC enjoys a FPU contract from the Comunidad de Madrid(PIPF-2022/SAL-GL-25948)。
文摘The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.
基金financially supported by the National Natural Science Foundation of China (no. 31272510)the Science Foundation of Xi'an (no. NC1405(1))the Innovation Fund of Graduate Student of Northwest University (no. YZZ13034)
文摘The amino acid contents of five floral sources Chinese honeys(jujube, rape, chaste, acacia, and lungan) were measured using reversed phase high-performance liquid chromatography(RP-HPLC). The results showed that proline was the main amino acid in most of the analyzed samples. Phenylalanine presents at the highest content in chaste honey samples, and the total amino acid contents of chaste honeys were also significantly higher than those of other honey samples. Based on the amino acid contents, honey samples were classified using chemometric methods(cluster analysis(CA), principal component analysis(PCA), and discriminant analysis(DA)). According to the CA results, chaste honeys could be separated from other honeys, while the remaining samples were correctly grouped together when the chaste honey data were excluded. By using DA, the overall correct classification rate reached 100%. The results revealed that amino acid contents could potentially be used as indicators to identify the botanical origin of unifloral honeys.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.
基金financially supported by the National Key Basic Research Program of China (2012CB124702, 2013CB127302)National Natural Science Foundation of China (31272452)the National Key Technology R&D Program of China (2011BAD26B01)
文摘Background: The current study was carried out to determine effects of dietary protein source and crude protein(CP)level on carcass characteristics, meat quality, and muscle amino acid(AA) profile in finishing gilts. The experiment was designed as a 2 × 2 factorial arrangement with two sources of dietary proteins(cottonseed meal, CSM vs. soybean meal, SBM) and two levels of CP(12 % vs. 14 %, as-fed basis). Seventy-two crossbred gilts(89.5 ± 0.9 kg) were allotted to one of four dietary treatments in a randomized complete block design for a period of 28 d. All diets were formulated to be isoenergetic and similar concentrations of standardized ileal digestible essential AA covering the nutrient requirements of pigs.Results: Growth, carcass characteristics and meat quality were not affected by dietary protein source nor crude protein level(P &gt; 0.10) except that average daily feed intake was increased by CSM diets(P = 0.03). Gilts offered reduced protein diets had lower muscle p H45min(P 〈 0.05). Neither dietary protein source nor crude protein level influenced N deposition. However, reduced protein diets decreased N intake, N excretion, and serum urea nitrogen content, whilst improved N efficiency(P 〈 0.01). CSM diets increased N intake(P = 0.04),but did not depress N efficiency. The concentrations of phenylalanine, tryptophan, cysteine and tyrosine(P 〈 0.05) of the longissimus muscle were decreased when gilts offered CSM diets, while muscle intracellular free valine concentration was increased(P = 0.03). The gilts offered reduced protein diets had greater intracellular concentrations of free methionine, lysine, and total AA in muscle(P 〈 0.05).Conclusion: These results suggest that CSM could replace SBM as a primary protein source in finishing pig diets in terms of performance, N efficiency, carcass characteristics, and meat quality, but decrease the concentrations of muscle specific AA. Furthermore, the reduced protein diet played an important role in increasing muscle intracellular concentrations of specific free amino acids(FAA), and in reducing the relative ratios of specific FAA to lysine in longissimus dorsi muscle of pig, whose biological meaning needs further studies.
基金This project was supported by a grant from a nationalnatural sciences foundation of China (No. 30 0 40 0 37)
文摘The protective effect and mechanism of diazepam on ischemia neurons during cerebral ischemia and reperfusion were studied. Sixty three Wistar rats were divided randomly into nine groups: control group , ischemia groups including subgroups of is3h, is3 h/rep1 h, is3 h/rep2 h, is3 h/rep3 h, diazepam treated groups , including subgroups of is3 h, is3 h/rep1 h, is3 h/rep2 h, is3 h/rep3 h with Zea longa's animal model of middle cerebral artery occlusion. The comparison between the ischemia group and diazepam treated group showed that diazepam could obviously decrease the production of glutamate, asparate, MDA and increase the synthesis and release of GABA, SOD and GSH PX. It was concluded that diazepam exerted its protective effects on neurons through complex mechanisms of regulating the synthesis and release of excitotary/inhibitory amino acids and free radicals.
基金financially supported by the National Key Research and Development Program of China through Grant 2016YFA0601000(H.Y.Xiao)National Natural Science Foundation of China through Grants 41425014,41273027 and 41173027(H.Y.Xiao)by the National Basic Research Program of China through Grants 2013CB956703(H.Y.Xiao)
文摘This paper describes a reliable and rapid method for the complete separation and quantitation of twenty-five amino acids typically found in plants, based on reversed phase high-performance liquid chromatography–linked fluorescence detector using a 150×4.6 mm Zorbax Eclipse AAA column. Plant tissue free amino acids(FAA)were extracted by ultrasonication with 5%(v/v) aqueous trifluoroacetic acid followed by ultrafiltration of extracts.The following analysis of amino acids was performed through programmed precolumn derivatization with orthophthalaldehyde and 9-fluorenylmethyl chloroformate reagents and efficient elution of derivatives within 26 min using binary gradient scheme. The method was validated over a concentration range of 4.5–450 μmol L^(-1)(μM).Separation analysis showed good selectivity(resolution>1.5) for most amino acids. The average repeatability(RSD%, relative standard deviation) of the analysis at seven calibration concentrations was below 4% and ranged from 1.13% to 12.04%. The intra-day mean coefficient of variation at two concentrations(22.5 and 90 μM) was within 2%, and the intermediate precision was less than 4%. The limits of detection were between 0.012 and 6.68 μM. The coefficients of determination(R2) of the linear calibration curves were from 0.9989 to 0.9999.When the method was applied to plant samples, the FAA recoveries at two spiked levels(25 and 100 μM) ranged from 67.0% to 108.9% with an average of 94.4%, and the precision was 0.26%–12.31% RSD. A specific application combining this method with optimized extraction and interference removal procedures was successfully used to determine the FAA pools in different plant tissues. Finally,a PLS-DA multivariate statistics model was validated for the classification of three plant species according to their FAA profiles.
基金Special Fund for International Cooperative Research of Qilu University of Technology(QLUTGJHZ2018010)。
文摘Using microbial fermentation to increase the content of free amino acids and short peptides in the organic fertilizer for castor bean meal can effectively promote plant growth and improve fruit quality.Using free amino acid and short peptide content as an indicator,through single factor and response surface optimization experiments,the process parameters(moisture content,fermentation time and inoculum quantity)of castor meal solid-state fermentation were optimized.The best process parameters for the solid-state fermentation were:the moisture content 62%,the fermentation time 20 d,and the inoculum quantity 0.23%.The moisture content had the greatest impact on the conversion rate of free amino acids and short peptides,and the protein conversion rate reached 65.6%.The scale-up experiment under the optimal conditions showed that the solid-state fermentation using the inoculum had a significant beneficial effect compared with other fermentation methods.The fermentation of castor cake fertilizer provides a theoretical and practical basis for production feasibility,and has important guiding significance for the effective utilization of castor bean meal.
基金Supported by the Natural National Science Foundation of China(Nos.42076040,41676067)the National Basic Research Program of China(973 Program)(No.2015CB755904)the 111 Project(No.B13030)。
文摘The composition and concentration of dissolved free amino acid(DFAA)of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column derivatization of o-phthalaldehyde.Results show that the average concentration of DFAA in the study area was 0.47±0.36μmol/L.In different sampling stations,the concentrations of DFAA with water depth showed complex variation patterns.At the sediment-seawater interface,the concentrations of DFAA in the western side of the trench were obviously higher than that in its eastern side.In the study area,there were no significant correlations between the concentrations of DFAA and the environmental parameters such as concentrations of chlorophyll a(Chl a),dissolved oxygen(DO),pH,and dissolved inorganic nitrogen(DIN),indicating that the concentrations of DFAA in seawater of the trench are affected by many factors,such as photosynthesis,respiration,temperature,pressure,illumination,and circulation.The dominant DFAA are similar in different water layers of sampling stations,including aspartic acid(Asp),glutamic acid(Glu),glycine(Gly),and serine(Ser).The composition of different amino acids,and the relative abundance of acidic,basic,and neutral amino acids might be related to the sources and consumption of various amino acids.Nine pairs of amino acids in the DFAA showed significantly positive relationship by correlation matrix analysis,suggesting that they might share similar biogeochemical processes.The degradation index(DI)of the DFAA in seawater of the Yap Trench could reflect the degradation,source,and freshness of DFAA in the trench to some extents.This is a preliminary study of amino acids from sea surface to hadal zone in the ocean,more works shall be done in different trenches to reveal their biogeochemical characte ristics in extreme marine environme nts.
基金This work was supported by the National High Technology Development Project of China (Grant No. AA625030) the Natural Science Foundation of Qingdao (Grant No. 04-2 JZ-110).
文摘Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The content of glycogen was high in January and March (2.89 and 2.82 g(100 g) ^-1 on average, respectively) and low in October (2.07g(100g)^- 1 on average). The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g( 100 g)^- 1 on average). The main fatty acids of oyster were palmitic acid (16:0), oleic acid (18: 1), eicosapentaenoic acid (EPA, 20: 5(0 3) and docosahexaenoic acid (DHA, 22:6(0 3). The major FAAs of oyster were Taurine, Glutamicacid, Glycin, Alanine, Arginine and Proline. Taurine was the most abundant FAA with its content ranging from 603 mg(100 g) ^-1 to 1 139 mg( 100 g) ^-1. The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.
基金Supported by National Natural Science Foundation of China,Grant No.81360356Scientific Research Foundation of Xinjiang Medical University,Grant No.XJC201221
文摘AIM: To perform plasma free amino acid (PFAA) profiling of esophageal squamous cell carcinoma (ESCC) patients at different pathological stages and healthy subjects.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD).
文摘Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects of inoculation with different starter cultures(Lactiplantibacillus plantarum HN108 and Staphylococcus simulans NJ209)on the free amino acids(FAAs),biogenic amines(BAs)and volatile compounds of fermented sausages were investigated using an amino acid analyzer,ultra performance liquid chromatography and gas chromatography-ion mobility spectrometry,respectively.The pH and carbonyl content of the inoculated group was significantly lower than those in the control group(P<0.05).L.plantarum HN108 significantly reduced the content of FAAs and BAs in fermented sausage production(P<0.05),while S.simulans NJ209 promoted the formation of FAAs(especially bitter amino acids)and exhibited slight BAs-reducing activity.In addition,L.plantarum HN108 promoted the formation of volatile compounds such as ketones,alcohols and alkenes in sausages.In conclusion,L.plantarum HN108 could contribute to reducing the content of putrescine and tyramine and forming the desirable flavor compounds in fermented sausages.Thus,L.plantarum HN108 is expected to be a starter culture that can improve the safety and flavor of fermented sausages.
基金supported by the Natural Sciences and Engineering Research Council of Canada, Alberta Innovatesthe Canada Research Chairs Program。
文摘Amino acids(AAs) are prevalent in source water, particularly during spring run-off. Monitoring of amino acids in source water is desirable for water treatment plants(WTP) to indicate changes in source water quality. The objective of this study was to establish analytical procedures for reliable monitoring of amino acids in source water. Therefore, we examined two different methods, large volume inject(LVI) and solid phase extraction(SPE), for sample preparation prior to HILIC-MS/MS. The LVI-HILIC-MS/MS method can provide fast and sensitive detection for clean samples, but suffers from matrix effects, resulting in irreproducible separation and shortening column lifetime. We have demonstrated that SPE was necessary prior to HILIC-MS/MS to achieve reproducible and reliable quantification of AAs in source water. A natural heterocyclic amine 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid(MTCCA) was also included in the method to indicate changes in other natural nitrogenous compounds in source water. The SPE-HILIC-MS/MS method was able to achieve limits of detection from 2.6-3400 ng/L for the amino acids and MTCCA with RSDs( n = 3) of 1.1%-4.8%. As well, retention times(RT) of the analytes were reproducible with variation less than 0.01 min( n = 3) through the entire project. We further applied the SPE-HILICMS/MS method to determine AAs in authentic source water samples collected from two drinking water treatment plants(WTPs) during the 2021 spring run-off season. The results support that the SPE-HILIC-MS/MS method does not require derivatization and can provide reliable, accurate, and robust analysis of AAs and MTCCA in source water, supporting future monitoring of source water quality.
基金supported by the National Key R&D Program of China(2021YFD1300404)。
文摘Background The synchronized absorption of amino acids(AAs)and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body.The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion,transport and metabolism,breast muscle protein metabolism,and growth in grower broilers.A total of 72021-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments,each with 6 replicates of 10 birds.The treatments comprised 3 different starch[corn:control,cassava:rapidly digestible starch(RDS),and pea:slowly digestible starch(SDS)]with 4 different AA levels[based on standardized ileal digestible lysine(SID Lys),0.92%,1.02%(as the standard),1.12%and 1.22%].Results An interaction between dietary starch sources and SID Lys levels significantly affected breast muscle yield(P=0.033).RDS and SDS diets,or SID Lys levels of 0.92%,1.02%,or 1.22%,significantly decreased the breast muscle yield of broilers in contrast to the corn starch diet with 1.12%SID Lys(P=0.033).The SID Lys levels of 1.12%and 1.22%markedly improved body weight(BW),body weight gain(BWG)from 22 to 42 days of age,and mRNA expression of y^(+)LAT1 and mTOR while reducing feed intake(FI)and feed/gain ratio(F/G)compared to the 0.92%SID Lys level(P<0.05).The SDS diet significantly decreased BW and BWG of broilers from 22 to 42 days of age,distal ileal starch digestibility,jejunal amylase and chymotrypsin activities,and mRNA expression of GLUT2 and y^(+)LAT1 compared to the corn starch diet(P<0.05).The RDS diet suppressed the breast muscle mass by down-regulating expression of mTOR,S6K1,and eIF4E and up-regulating expression of MuRF,CathepsinB,Atrogin-1,and M-calpain compared to the corn starch diet(P<0.05).Targeted metabolomics analysis revealed that the SDS diet significantly increased acetyl-CoA andα-ketoglutaric acid levels in the tricarboxylic acid(TCA)cycle(P<0.05)but decreased the ileal digestibility of Lys,Tyr,Leu,Asp,Ser,Gly,Pro,Arg,Ile,and Val compared to the corn starch group(P<0.05).Conclusion The SDS diet impaired broiler growth by reducing intestinal starch digestibility,which inhibited intestinal AA and glucose absorption and utilization,increased AA oxidation for energy supply,and lowered the efficiency of protein synthesis.Although the RDS diet resulted in growth performance similar to the corn starch diet,it reduced breast muscle mass by inhibiting protein synthesis and promoting degradation.
基金Supported by the National Natural Science Foundation of China (No.81373826 No.81674032)+1 种基金Natural Science Foundation of Shandong Province (No. ZR2014HQ074)Key Development & Research Program of Shandong Province (No.2017GSF19110)
文摘AIM: To determine the differences of amino acid(AA) levels in experimental autoimmune uveoretinitis(EAU). METHODS: AA analysis of the plasma samples in EAU rats induced by interphotoreceptor retinoid-binding protein emulsion were performed with high performance liquid chromatography(HPLC) and phenylisothiocyanate(PITC) pre-column derivation methods were performed. Using partial least squares discriminant analysis(PLS-DA), the potential biomarkers were identified in EAU rat plasma, and the metabolic pathways related to EAU were further analyzed. RESULTS: The method results showed that linear(r≥0.9957), intra-day reproducible [relative standard deviation(RSD)=0.04%-1.33%], inter-day reproducible(RSD=0.06%-2.07%), repeatability(RSD=0.03%-0.89%), stability(RSD=0.05%-2.48%) and recovery(RSD=1.98%-4.39%), with detection limits of 0.853-11.4 ng/mL. The metabolic profile in EAU rats was different from that in the control groups five AAs concentrations were increased and nine AAs were reduced. Moreover, five metabolic pathways were related to the development of EAU. CONCLUSION: The developed method is a simple, rapid and convenient for determination of AAs in EAU rat plasma, and these findings will provide a comprehensiveinsight on the metabolic profiling of the pathological changes in EAU.
文摘Two consecutive growth experiments with meat-type chickens (Ross 308) were conducted in order to quantify the age-dependent amino acid (AA) content in the whole body protein of male and female birds based on experimental data of the feather and feather-free body protein fractions. Birds were reared under uniform housing and feeding conditions (floor pens, 15 pens per gender, 5 birds per pen) during the starter (day 1 to 22) and grower period (day 22 to 36). Both the starter and grower diet based on corn, wheat, soybean meal, soybean protein concentrate and feed amino acids was formulated to ensure an equal feed protein quality close to the ideal amino acid ratio by adjusting a constant mixture of the feed proteins. At start of the experiment and further on weekly up to the end of the 5th week, 15 birds per gender (each 3 pens of 5 birds) were selected and fasted for 24 h, to emptying of gastro-intestinal tract, respectively. Subsequently, birds were euthanized and the feathers were manually removed. Nitrogen (N) and AA content were determined both in the feather and feather-free body fraction. The concentration of individual AAs in both of body protein fraction is varying considerably. Explicitly higher Cys, Ser and Pro but importantly lower Met, Lys and His concentrations were found in the feather protein. Furthermore, significant differences (p for nearly all AAs of the studied body protein fractions and the whole empty body protein dependent on age of birds were observed. Especially high deviations were obtained during the first week of age and at the end of the experiment. According to this observed variation of AA concentrations must be concluded that the body AA composition of meat-type chickens during growth is not constant. The detected gender-specific differences for several AAs in the feather and body protein of male and female birds were rather low and with very low variation.
文摘Soy protein isolate and egg white protein were added to cassava-banana gluten-free pasta and the effects on the nutritional quality,digestibility properties,protein digestibility corrected amino acid(PDCAA),and sensory acceptance of the pasta was observed.Banana-cassava composite flour(75:25)was blended with soy protein isolate or egg white protein at the following rates:0,5,10,and 15 g/100 g flour.Cooked pasta samples were analysed for total phenolic content(TPC),antioxidant activity,amino acid profiles,protein content,starch digestibility,protein digestibility and protein digestibility corrected amino acid score(PDCAAS).Addition of both proteins decreased starch digestibility,increased protein digestibility,improved the balance of the amino acid profile,and PDCAAS whereas only soy protein isolate enhanced the TPC and antioxidant capacity of the banana-cassava pasta.An egg white protein-fortified banana-cassava pasta had better customer acceptance and purchase intent than soy protein isolate inclusion.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.