在核测井领域,蒙特卡罗方法应用于仪器开发设计到数据解释的各个环节。通用型多粒子输运程序(Monte Carlo N-Particle Transport Code,MCNP)作为领域内开展研究和解决问题的首要选择,其使用一直以来都受到许可限制,令研究人员面临挑战...在核测井领域,蒙特卡罗方法应用于仪器开发设计到数据解释的各个环节。通用型多粒子输运程序(Monte Carlo N-Particle Transport Code,MCNP)作为领域内开展研究和解决问题的首要选择,其使用一直以来都受到许可限制,令研究人员面临挑战。因此,FLUktuierende KAskade(FLUKA)具有开放使用权限的优势,利用FLUKA开展核测井基准模拟,对比分析FLUKA作为MCNP替代方案的可行性。利用FLUKA和MCNP分别构建具有代表性的核测井基准模型,涵盖伽马射线输运、中子输运以及伽马-中子耦合输运过程,获取了伽马能谱和密度、孔隙度等测井响应,用以评估FLUKA在低能辐射传输模拟中的表现。研究结果显示,对于低能伽马辐射输运,FLUKA获取的地层散射伽马能谱和MCNP响应之间的最大相对误差为5.37%,密度响应相对误差在3.75%以内。对于低能中子输运,二者孔隙度响应的相对误差不超过1%,并且中子诱发伽马射线能谱基本吻合。该研究通过对基准核测井问题的模拟分析,证明了可以使用FLUKA代替MCNP在核测井领域分析解决问题。展开更多
在建的上海硬X射线自由电子激光装置(Shanghai HIgh repetition rate XFEL aNd Extreme light facility,SHINE)的加速器隧道内,采用束流刮束器刮掉束晕外围张角比较大的电子,刮束器的束流损失率为0.1‰。本文采用蒙特卡洛程序FLUKA,用SO...在建的上海硬X射线自由电子激光装置(Shanghai HIgh repetition rate XFEL aNd Extreme light facility,SHINE)的加速器隧道内,采用束流刮束器刮掉束晕外围张角比较大的电子,刮束器的束流损失率为0.1‰。本文采用蒙特卡洛程序FLUKA,用SOURCE程序实现电子束在3σbeam外的高斯分布,以尽量真实模拟电子在束流刮束器处的丢失情况,解决了低功率刮束情况下蒙特卡洛模拟无统计性结果的难题。利用束流环形高斯模型对刮束器的活化进行了分析,结果表明环形高斯模型可以更真实地再现电子在束流刮束器的丢失情况;5年运行后距刮束器30 cm处的剩余剂量率达到了数百μSv/h至数mSv/h,和国外类似装置计算结果相当;通过对放射性核素的种类分析,结果证明刮束器(钨)的放射性废物处置难度不大。展开更多
Next-generation nuclear reactor technologies,such as molten salt and fast reactors present complex analytical challenges that require advanced modeling and simulation tools.Yet,traditional workflows for Monte Carlo si...Next-generation nuclear reactor technologies,such as molten salt and fast reactors present complex analytical challenges that require advanced modeling and simulation tools.Yet,traditional workflows for Monte Carlo simulations like FLUKA are labor-intensive and error-prone,relying on manual input file generation and postprocessing.This limits scalability and efficiency.In this work,we present AutoFLUKA,a novel framework that leverages domain knowledge-embedded large language models(LLMs)and AI agents to automate the entire FLUKA simulation workflow from input file creation to execution management,and data analysis.AutoFLUKA also integrates Retrieval-Augmented Generation(RAG)and a web-based user-friendly graphical interface,enabling users to interact with the system in real time.Benchmarking against manual FLUKA simulations,AutoFLUKA demonstrated substantial improvements in resolving FLUKA error-related queries,particularly those arising from input file creation and execution.Traditionally,such issues are addressed through expert support on the FLUKA user forum,often resulting in significant delays.The resolution time for these queries was also reduced from several days to under one minute.Additionally,human-induced simulation errors were mitigated,and a high accuracy in key simulation metrics,such as neutron fluence and microdosimetric quantities,was achieved,with uncertainties below 0.001%for large sample sizes.The flexibility of AutoFLUKA was demonstrated through successful application to both general and specialized nuclear scenarios,and its design allows for straightforward extension to other simulation platforms.These results highlight AutoFLUKA’s potential to transform nuclear engineering analysis by enhancing productivity,reliability,and accessibility through AI-driven automation.展开更多
在中高能质子诱发散裂反应相关核工程设计中,可靠的蒙特卡罗模拟程序结合核反应理论模型具有较好的理论指导意义。本工作中,利用GEANT4耦合INCL4和ABLA理论模型以及FLUKA耦合PEANUT模型模拟计算了几百MeV至几个GeV质子轰击Be,Al,Fe,W,U...在中高能质子诱发散裂反应相关核工程设计中,可靠的蒙特卡罗模拟程序结合核反应理论模型具有较好的理论指导意义。本工作中,利用GEANT4耦合INCL4和ABLA理论模型以及FLUKA耦合PEANUT模型模拟计算了几百MeV至几个GeV质子轰击Be,Al,Fe,W,U等靶后30°,60°,120°,150°出射角产生的散裂中子双微分截面,并与现有实验数据进行了比较。结果发现,FLUKA和GEANT4模拟计算较好地再现了Al,Fe,W,U等靶实验测量数据。然而,模拟结果明显低估了Be靶出射中子能量小于10 Me V能区的实验数据。展开更多
文摘在核测井领域,蒙特卡罗方法应用于仪器开发设计到数据解释的各个环节。通用型多粒子输运程序(Monte Carlo N-Particle Transport Code,MCNP)作为领域内开展研究和解决问题的首要选择,其使用一直以来都受到许可限制,令研究人员面临挑战。因此,FLUktuierende KAskade(FLUKA)具有开放使用权限的优势,利用FLUKA开展核测井基准模拟,对比分析FLUKA作为MCNP替代方案的可行性。利用FLUKA和MCNP分别构建具有代表性的核测井基准模型,涵盖伽马射线输运、中子输运以及伽马-中子耦合输运过程,获取了伽马能谱和密度、孔隙度等测井响应,用以评估FLUKA在低能辐射传输模拟中的表现。研究结果显示,对于低能伽马辐射输运,FLUKA获取的地层散射伽马能谱和MCNP响应之间的最大相对误差为5.37%,密度响应相对误差在3.75%以内。对于低能中子输运,二者孔隙度响应的相对误差不超过1%,并且中子诱发伽马射线能谱基本吻合。该研究通过对基准核测井问题的模拟分析,证明了可以使用FLUKA代替MCNP在核测井领域分析解决问题。
文摘在建的上海硬X射线自由电子激光装置(Shanghai HIgh repetition rate XFEL aNd Extreme light facility,SHINE)的加速器隧道内,采用束流刮束器刮掉束晕外围张角比较大的电子,刮束器的束流损失率为0.1‰。本文采用蒙特卡洛程序FLUKA,用SOURCE程序实现电子束在3σbeam外的高斯分布,以尽量真实模拟电子在束流刮束器处的丢失情况,解决了低功率刮束情况下蒙特卡洛模拟无统计性结果的难题。利用束流环形高斯模型对刮束器的活化进行了分析,结果表明环形高斯模型可以更真实地再现电子在束流刮束器的丢失情况;5年运行后距刮束器30 cm处的剩余剂量率达到了数百μSv/h至数mSv/h,和国外类似装置计算结果相当;通过对放射性核素的种类分析,结果证明刮束器(钨)的放射性废物处置难度不大。
基金supported by the US Department of Energy Office of Nuclear Energy Distinguished Early Career Program under contract number DE-NE0009468support is provided by the Texas A&M Institute of Data Science(TAMIDS)Seed Program for AI,Computing,and Data Science。
文摘Next-generation nuclear reactor technologies,such as molten salt and fast reactors present complex analytical challenges that require advanced modeling and simulation tools.Yet,traditional workflows for Monte Carlo simulations like FLUKA are labor-intensive and error-prone,relying on manual input file generation and postprocessing.This limits scalability and efficiency.In this work,we present AutoFLUKA,a novel framework that leverages domain knowledge-embedded large language models(LLMs)and AI agents to automate the entire FLUKA simulation workflow from input file creation to execution management,and data analysis.AutoFLUKA also integrates Retrieval-Augmented Generation(RAG)and a web-based user-friendly graphical interface,enabling users to interact with the system in real time.Benchmarking against manual FLUKA simulations,AutoFLUKA demonstrated substantial improvements in resolving FLUKA error-related queries,particularly those arising from input file creation and execution.Traditionally,such issues are addressed through expert support on the FLUKA user forum,often resulting in significant delays.The resolution time for these queries was also reduced from several days to under one minute.Additionally,human-induced simulation errors were mitigated,and a high accuracy in key simulation metrics,such as neutron fluence and microdosimetric quantities,was achieved,with uncertainties below 0.001%for large sample sizes.The flexibility of AutoFLUKA was demonstrated through successful application to both general and specialized nuclear scenarios,and its design allows for straightforward extension to other simulation platforms.These results highlight AutoFLUKA’s potential to transform nuclear engineering analysis by enhancing productivity,reliability,and accessibility through AI-driven automation.
文摘在中高能质子诱发散裂反应相关核工程设计中,可靠的蒙特卡罗模拟程序结合核反应理论模型具有较好的理论指导意义。本工作中,利用GEANT4耦合INCL4和ABLA理论模型以及FLUKA耦合PEANUT模型模拟计算了几百MeV至几个GeV质子轰击Be,Al,Fe,W,U等靶后30°,60°,120°,150°出射角产生的散裂中子双微分截面,并与现有实验数据进行了比较。结果发现,FLUKA和GEANT4模拟计算较好地再现了Al,Fe,W,U等靶实验测量数据。然而,模拟结果明显低估了Be靶出射中子能量小于10 Me V能区的实验数据。