期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Impact of climate change on maize yield in China from 1979 to 2016 被引量:16
1
作者 WU Jian-zhai ZHANG Jing +4 位作者 GE Zhang-ming XING Li-wei HAN Shu-qing SHEN Chen KONG Fan-tao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期289-299,共11页
Climate change severely impacts agricultural production, which jeopardizes food security. China is the second largest maize producer in the world and also the largest consumer of maize. Analyzing the impact of climate... Climate change severely impacts agricultural production, which jeopardizes food security. China is the second largest maize producer in the world and also the largest consumer of maize. Analyzing the impact of climate change on maize yields can provide effective guidance to national and international economics and politics. Panel models are unable to determine the group-wise heteroscedasticity, cross-sectional correlation and autocorrelation of datasets, therefore we adopted the feasible generalized least square(FGLS) model to evaluate the impact of climate change on maize yields in China from 1979–2016 and got the following results:(1) During the 1979–2016 period, increases in temperature negatively impacted the maize yield of China. For every 1℃ increase in temperature, the maize yield was reduced by 5.19 kg 667 m^–2(1.7%). Precipitation increased only marginally during this time, and therefore its impact on the maize yield was negligible. For every 1 mm increase in precipitation, the maize yield increased by an insignificant amount of 0.043 kg 667 m^–2(0.014%).(2) The impacts of climate change on maize yield differ spatially, with more significant impacts experienced in southern China. In this region, a 1℃ increase in temperature resulted in a 7.49 kg 667 m^–2 decrease in the maize yield, while the impact of temperature on the maize yield in northern China was insignificant. For every 1 mm increase in precipitation, the maize yield increased by 0.013 kg 667 m^–2 in southern China and 0.066 kg 667 m^–2 in northern China.(3) The resilience of the maize crop to climate change is strong. The marginal effect of temperature in both southern and northern China during the 1990–2016 period was smaller than that for the 1979–2016 period. 展开更多
关键词 climate change maize yield fgls model China
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部