期刊文献+
共找到3,035篇文章
< 1 2 152 >
每页显示 20 50 100
Room-Temperature Ferromagnetism via Superexchange in Semiconductor(Cr_(4/6),Mo_(2/6))_(3)Te_(6)
1
作者 Jia-Wen Li Gang Su Bo Gu 《Chinese Physics Letters》 2025年第9期146-162,共17页
Realizing ferromagnetic semiconductors with high Curie temperature TC is still a challenge in spintronics.Recent experiments have reported two-dimensional(2D)room temperature ferromagnetic metals,such as monolayer Cr_... Realizing ferromagnetic semiconductors with high Curie temperature TC is still a challenge in spintronics.Recent experiments have reported two-dimensional(2D)room temperature ferromagnetic metals,such as monolayer Cr_(3)Te_(6).In this paper,through density functional theory(DFT)calculations,we propose a method to obtain 2D high TC ferromagnetic semiconductors through element replacement in these ferromagnetic metals.We predict that monolayer(Cr_(4/6),Mo_(2/6))_(3)Te_(6),created via element replacement in monolayer Cr_(3)Te_(6),is a room-temperature ferromagnetic semiconductor exhibiting a band gap of 0.34 eV and a TC of 384 K.Our analysis reveals that the metal-to-semiconductor transition stems from the synergistic interplay of Mo-induced lattice distortion,which resolves band overlap,and the electronic contributions of Mo dopants,which further drive the formation of a distinct band gap.The origin of the high TC is traced to strong superexchange coupling between magnetic ions,analyzed via the superexchange model with DFT and Wannier function calculations.Considering the fast developments in fabrication and manipulation of 2D materials,our theoretical results propose an approach to explore high-temperature ferromagnetic semiconductors derived from experimentally obtained 2D high-temperature ferromagnetic metals through element replacement. 展开更多
关键词 ferromagnetic semiconductors ferromagnetic metalswe MONOLAYER density functional theory dft calculationswe room temperature ferromagnetism element replacement ferromagnetic metalssuch SEMICONDUCTOR
原文传递
Antiferromagnetic Spin Fluctuations and Structural Transition in Cluster Mott Insulator Candidate Nb_(3)Cl_(8)Revealed by^(93)Nb-and^(35)Cl-NMR
2
作者 Y.Z.Zhou X.Han +7 位作者 J.Luo D.T.Wu A.F.Fang B.Shen B.J.Feng Y.G.Shi J.Yang R.Zhou 《Chinese Physics Letters》 2025年第3期153-166,共14页
Motivated by recent studies of the cluster Mott insulator candidate compound Nb_(3)Cl_(8),this study performs^(93)Nb and^(35)Cl nuclear magnetic resonance(NMR)measurements to investigate the electron correlations.Belo... Motivated by recent studies of the cluster Mott insulator candidate compound Nb_(3)Cl_(8),this study performs^(93)Nb and^(35)Cl nuclear magnetic resonance(NMR)measurements to investigate the electron correlations.Below the structural transition temperature T_(s)∼97 K,all satellites of the^(93)Nb NMR spectra split into three distinct peaks,which suggests symmetry lowering due to the structural transition and could be attributed to the change in the Nb-Nb bond-lengths of the Nb3 clusters.The spin-lattice relaxation rate 1/T_(1)divided by the temperature T,1/T_(1)T,increases upon cooling to T_(s)for all Cl sites,whereas only the Knight shift K of Cl located at the center of the Nb_(3) clusters exhibits a temperature dependence similar to that observed in magnetic susceptibility.These findings collectively demonstrate the existence of strong spin correlations between the Nb atoms in Nb_(3)Cl_(8),which are closely associated with Mottness. 展开更多
关键词 NMR ferromagnetIC Transition
原文传递
Effect of Ferromagnetic Particles on the Effective Mechanical Properties of Bulk Superconductor with Interfacial Effect
3
作者 Ping Ma Yufeng Zhao 《Acta Mechanica Solida Sinica》 2025年第4期642-650,共9页
This study focused on investigating the effects of various factors on the mechanical properties of superconducting matrix composites reinforced with ferromagnetic particles and interface phases when exposed to externa... This study focused on investigating the effects of various factors on the mechanical properties of superconducting matrix composites reinforced with ferromagnetic particles and interface phases when exposed to external magnetic fields.A micromechanical model was created by simplifying the basic properties and composition of the interface,utilizing principles such as Eshelby’s equivalent inclusion theory and Hooke’s law,as well as applying uniform stress boundary conditions.Through the development of equations,the study predicted changes in effective mechanical properties,highlighting the significant influence of parameters like the interface phase,inclusions,and magnetic field on the effective elastic modulus and magnetostriction of the composite material.By shedding light on these relationships,the research offers valuable insights for the manufacture and application of ferromagnetic particle-reinforced superconducting matrix composites with interface phases,providing a foundation for future research in this area. 展开更多
关键词 ferromagnetic particles Effective mechanical properties Interface phase MAGNETOSTRICTION
原文传递
DFT study of rare-earth ferromagnetic spinels HgNd_(2)Z_(4)(Z=S,Se)for spintronics applications
4
作者 Sadia Nazir N.A.Noor +5 位作者 Asif Hussain Shahzad Naseem Saira Riaz ALaref Sohail Mumtaz A.Ibrahim 《Journal of Rare Earths》 2025年第6期1228-1237,I0006,共11页
Spintronic technology and energy applications benefit greatly from the exceptional characteristics of rare-earth-based spinel chalcogenides.Examining the electrical,magnetic and thermoelectric properties of HgNd_(2)Z_... Spintronic technology and energy applications benefit greatly from the exceptional characteristics of rare-earth-based spinel chalcogenides.Examining the electrical,magnetic and thermoelectric properties of HgNd_(2)Z_(4)(Z=S,Se)in a systematic manner is essential for the strategic advancement of spin polarized current in a spintronic device.In this recent study,the WIEN2K code was employed to comprehensively analyze these properties.The calculated lattice constants,obtained using the generalized gradient approximation(GGAsol-PBE),closely match experimental findings of the similar family compounds.The examination of the stability of ferromagnetic states in the ground state involves comparing energies between anti-ferromagnetic and ferromagnetic states.Moreover,an assessment of the stability of the cubic phase in both spinels was conducted using analyses of the phonon dispersion curve,formation energy and Born stability criteria.The ductility characteristics were examined through the calculation of Poisson's and Pugh's ratios.Furthermore,details regarding the density of states,spin polarization,ex-change coupling and Curie temperature were provided to explore the characteristics associated with ferromagnetism.Potential optoelectronic applications were proposed,leveraging the direct band gaps of 1.4 and 1.0 eV for HgNd_(2)Z_(4)(Z=S,Se)respectively,within the visible spectrum.Particularly noteworthy is the effective light absorption of HgNd2Se4 in the visible range,characterized by prominent peaks that facilitate the transition of electrons from the valence band(VB)to the conduction band(CB).Additionally,the study extends to thermoelectric characteristics,determining various factors such as Seebeck coef-ficient(S),figure of merit(ZT),electrical and thermal conductivities of the evaluated spinels. 展开更多
关键词 DFT calculations Rare earth based spinels ferromagnetISM Absorption co-efficient Magnetic susceptibility Figure of merit
原文传递
Robustness of ferromagnetism in van der Waals magnet Fe_(3)GeTe_(2) to hydrostatic pressure
5
作者 Yonglin Wang Xu-Tao Zeng +4 位作者 Bo Li Cheng Su Takanori Hattori Xian-Lei Sheng Wentao Jin 《Chinese Physics B》 2025年第4期102-107,共6页
Two-dimensional van der Waals ferromagnet Fe_(3)GeTe_(2)(FGT)holds a great potential for applications in spintronic devices due to its high Curie temperature,easy tunability,and excellent structural stability in air.T... Two-dimensional van der Waals ferromagnet Fe_(3)GeTe_(2)(FGT)holds a great potential for applications in spintronic devices due to its high Curie temperature,easy tunability,and excellent structural stability in air.Theoretical studies have shown that pressure,as an external parameter,significantly affects its ferromagnetic properties.In this study,we have performed comprehensive high-pressure neutron powder diffraction(NPD)experiments on FGT up to 5 GPa to investigate the evolution of its structural and magnetic properties with hydrostatic pressure.The NPD data clearly reveal the robustness of the ferromagnetism in FGT,despite of an apparent suppression by hydrostatic pressure.As the pressure increases from 0 to 5 GPa,the Curie temperature is found to decrease monotonically from 225(5)K to 175(5)K,together with a dramatically suppressed ordered moment of Fe,which is well supported by the first-principles calculations.Although no pressure-driven structural phase transition is observed up to 5 GPa,quantitative analysis on the changes of bond lengths and bond angles indicates a significant modification of the exchange interactions,which accounts for the pressure-induced suppression of the ferromagnetism in FGT. 展开更多
关键词 van der Waals material ferromagnetISM hydrostatic pressure neutron diffraction
原文传递
The time-fractional(2+1)-dimensional Heisenberg ferromagnetic spin chain equation:its Lie symmetries,exact solutions and conservation laws
6
作者 Jicheng Yu Yuqiang Feng 《Communications in Theoretical Physics》 2025年第5期21-30,共10页
In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and re... In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and reduce the corresponding(2+1)-dimensional fractional partial differential equations with the Riemann–Liouville fractional derivative to(1+1)-dimensional counterparts with the Erdélyi–Kober fractional derivative.Then,we obtain the power series solutions of the reduced equations,prove their convergence and analyze their dynamic behavior graphically.In addition,the conservation laws for all the obtained Lie symmetries are constructed using the new conservation theorem and the generalization of Noether operators. 展开更多
关键词 Lie symmetries fractional partial differential equation Heisenberg ferromagnetic spin chain equation power series solutions conservation laws
原文传递
Two-Dimensional XY Ferromagnet Induced by Long-Range Interaction
7
作者 Tianning Xiao Dingyun Yao +2 位作者 Chao Zhang Zhijie Fan Youjin Deng 《Chinese Physics Letters》 2025年第7期10-15,共6页
The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mech... The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays. 展开更多
关键词 advanced updat long range interaction lr interacting systemsthe two dimensional xy model lr coupling algebraically decaying ferromagnetic phase d xy model
原文传递
Magnetic-Mediated Carrier, Phonon and Spin Dynamics in the Ferromagnetic Semiconductor (In,Fe)Sb
8
作者 K.Hu X.H.Zhu +2 位作者 H.L.Wang D.H.Wei J.Qi 《Chinese Physics Letters》 2025年第5期206-214,共9页
We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the p... We investigate the carrier, phonon, and spin dynamics in the ferromagnetic semiconductor(In,Fe)Sb using ultrafast optical pump-probe spectroscopy. We discover two anomalies near T^(*)(~40 K) and T^(†)(~200 K) in the photoexcited carrier dynamics, which can be attributed to the electron-spin and spin-lattice scattering processes influenced by the magnetic phase transition and modifications in magnetic anisotropy. The magnetization change can be revealed by the dynamics of coherent acoustic phonon. We also observe abrupt changes in the photoinduced spin dynamics near T^(*)and T^(†), which not only illustrate the spin-related scatterings closely related to the long-range magnetic order, but also reveal the D'yakonov–Perel and Elliott–Yafet mechanisms dominating at temperatures below and above T^(†), respectively. Our findings provide important insights into the nonequilibrium properties of the photoexcited(In,Fe)Sb. 展开更多
关键词 magnetization change photoexcited carrier dynamics spin dynamics magnetic mediated carrier dynamics ferromagnetic semiconductor modifications magnetic anisotropy phonon dynamics coherent acoustic phonon
原文传递
Nonlinear traveling wave vibration of rotating ferromagnetic functionally graded cylindrical shells under multi-physics fields
9
作者 Feng LIAO Yuda HU +1 位作者 Tao YANG Xiaoman LIU 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1921-1938,I0025-I0036,共30页
The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonl... The nonlinear traveling wave vibration of rotating ferromagnetic functionally graded(FG)cylindrical shells under multi-physics fields is investigated.Grounded in the Kirchhoff-Love thin shell theory,the geometric nonlinearity is incorporated into the model,and the constitutive equations are derived.The physical parameters of functionally graded materials(FGMs),which exhibit continuous variation across the thickness gradient,are of particular interest.The nonlinear magneto-thermoelastic governing equations are derived in accord with Hamilton's principle.The nonlinear partial differential equations are discretized with the Galerkin method,and the analytical expression of traveling wave frequencies is derived with an approximate method.The accuracy of the proposed method is validated through the comparison with the results from the literature and numerical solutions.Finally,the visualization analyses are conducted to examine the effects of key parameters on the traveling wave frequencies.The results show that the factors including the power-law index,temperature,magnetic field intensity,and rotating speed have the coupling effects with respect to the nonlinear vibration behavior. 展开更多
关键词 ferromagnetic functionally graded(FG)cylindrical shell nonlinear traveling wave vibration multi-physics field approximate analytical method
在线阅读 下载PDF
Giant Anomalous Nernst Angle Induced by Berry Curvature in Layered Itinerant Ferromagnets
10
作者 Yu-Ting Qian Jiu-Yun Zhang +7 位作者 Xiang-Yu Bi Peng Chen Hong-Zi Cao Wei-Feng Xu Zhong-Yuan Liu Kun Zhai Hong-Tao Yuan Jun-Wei Huang 《Chinese Physics Letters》 2025年第9期268-304,共37页
Berry curvature describes the intrinsic geometric property of electronic band structure,crucial for governing emergent transport phenomena.As a typical Berry-curvature-related property,the anomalous Nernst effect prob... Berry curvature describes the intrinsic geometric property of electronic band structure,crucial for governing emergent transport phenomena.As a typical Berry-curvature-related property,the anomalous Nernst effect probes local Berry curvature near the Fermi surface,whereas the anomalous Hall effect integrates contributions across all occupied states.Thus,the anomalous Nernst effect is a superior probe for detecting subtle evolution of Berry curvature near the Fermi level;however,their relation remains elusive.Here,we demonstrate giant anomalous Nernst angles induced by Berry curvature in layered itinerant ferromagnets Fe_(3)GaTe_(2)and Fe_(5)GeTe_(2).Their maximum values(≈0.33 for Fe_(3)GaTe_(2)and≈0.41 for Fe_(5)GeTe_(2))are one order of magnitude larger than those of traditional ferromagnets(θ_(AN)^(max)<0.02).Scaling analysis of anomalous Hall effect in these two systems further suggests these giant angles originate from intrinsic Berry curvature.These findings indicate Berrycurvature-dominated regimes,and establish these materials for high-performance spin-caloritronic devices. 展开更多
关键词 anomalous hall effect giant anomalous nernst effect emergent transport phenomenaas detecting subtle evolution berry curvature anomalous nernst effect layered itinerant ferromagnets electronic band structurecrucial berry curvature
原文传递
Hysteresis-Loop Criticality in Disordered Ferromagnets–A Comprehensive Review of Computational Techniques
11
作者 Djordje Spasojevic Sanja Janicevic +1 位作者 Svetislav Mijatovic Bosiljka Tadic 《Computer Modeling in Engineering & Sciences》 2025年第2期1021-1107,共87页
Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p... Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality. 展开更多
关键词 Disordered ferromagnets hysteresis-loop criticality magnetization-reversal avalanches in simulations and experiments zero-temperature and thermal Random Field Ising Model simulations computational techniques for multiparameter scaling analysis multifractal Barkhausen noise finite driving rates demagnetizing effects nonequilibrium critical dynamics
在线阅读 下载PDF
Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin–orbit torque efficiency
12
作者 赵乾 张腾飞 +6 位作者 何斌 李子木 张森富 于国强 王建波 刘青芳 魏晋武 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期688-694,共7页
Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncoll... Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field,namely the magnetic moment drag effect,which further influences the characteristic of SOT efficiency.In this work,we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance(ST-FMR)method.A full analysis on the AFM/FM systems with exchange bias is performed,and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy.The ST-FMR results can be well fitted by this model.We obtained the relative accurate SOT efficiencyξ_(DL)=0.058 for the IrMn film.This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias. 展开更多
关键词 ANTIferromagnetS spin-orbit torque exchange bias spin torque ferromagnetic resonance
原文传递
Interacting topological magnons in a checkerboard ferromagnet 被引量:2
13
作者 朱恒 施洪潮 +1 位作者 唐政国 唐炳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期596-601,共6页
This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the i... This work is devoted to studying the magnon-magnon interaction effect in a two-dimensional checkerboard ferromagnet with the Dzyaloshinskii-Moriya interaction.Using a first-order Green function method,we analyze the influence of magnon-magnon interaction on the magnon band topology.We find that Chern numbers of two renormalized magnon bands are different above and below the critical temperature,which means that the magnon band gap-closing phenomenon is an indicator for one topological phase transition of the checkerboard ferromagnet.Our results show that the checkerboard ferromagnet possesses two topological phases,and its topological phase can be controlled either via the temperature or the applied magnetic field due to magnon-magnon interactions.Interestingly,it is found that the topological phase transition can occur twice with the increase in the temperature,which is different from the results of the honeycomb ferromagnet. 展开更多
关键词 topological magnons magnon-magnon interactions topological phase transitions checkerboard ferromagnets
原文传递
DFT investigation of half-metallic ferromagnetic rare earth based spinels MgHo_(2)Z_(4)(Z=S,Se) 被引量:1
14
作者 Maiza Zanib Mumtaz Manzoor +4 位作者 N.A.Noor M.Waqas Iqbal Mazia Asghar H.H.Hegazy A.Laref 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期121-128,I0005,共9页
Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done wi... Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done with Perdew-Burke-Ehrenzorf(PBE)sol-generalized gradient approximation(GGA)to calculate the lattice constant of both spinels comparable to experimental data.In addition,Born stability criteria and negative formation energy show that our studied spinels are also structurally and dynamically stable in the cubic phase.For ferromagnetic(FM)state stability,we also calculated the energy differences among FM,antiferromagnetic(AFM),and non-magnetic(NM)states.Additionally,Curie temperatures of ferromagnetic phases were also estimated.We used Trans-Blaha improved BeckeJohnson(TB-mBJ)potential functional for electronics as well as magnetic characteristics,which lead to the consistent explanation of half-metallic ferromagnetism,representing the whole band-occupancy in material with exact detail of density of states(DOS).The stable FM state was examined in spinels due to the exchange splitting of Ho cation consisting of p-d hybridizations compatible with the result achieved for electronics band structure and DOS.Further,spin magnetic moment was explained in terms of anion,cation,and sharing charge on studied spinels.In addition,the calculated thermoelectric properties clearly show that operation range of these systems may be utilized by future experimental works for identifying the potential applications of these systems. 展开更多
关键词 Ho-based spinels DFT simulations Mechanical parameters Electronic properties HM ferromagnetism Figure of merit
原文传递
关于Planar Ferromagnets and Antiferromagnets泛函的径向极小元的注记
15
作者 齐龙兴 雷雨田 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期15-20,共6页
就Bethuel,Brezis和Helein提出的问题讨论了Planar Ferromagnets and Antiferromagnets泛函在H={u(x)=(sinf(r)|xx|,cosf(r))∈H1(B1,S2);f(0)=0,f(1)=2π,r=|x|}中的径向极小元的一些性质,其中包括此泛函的径向极小元的零点的分布及若... 就Bethuel,Brezis和Helein提出的问题讨论了Planar Ferromagnets and Antiferromagnets泛函在H={u(x)=(sinf(r)|xx|,cosf(r))∈H1(B1,S2);f(0)=0,f(1)=2π,r=|x|}中的径向极小元的一些性质,其中包括此泛函的径向极小元的零点的分布及若干个上界估计,并给出了这一问题的肯定回答. 展开更多
关键词 PLANAR ferromagnetS and Antiferromagnets泛函 径向极小元 一致估计 PLANAR ferromagnetS and Antiferromagnets泛函 径向极小元 一致估计
在线阅读 下载PDF
Defect-manipulated magnetoresistance and above-room-temperature ferromagnetism in two-dimensional BaNi_(2)V_(2)O_(8)
16
作者 Pengfei Tan Chuanhui Zhu +6 位作者 Jinjin Yang Shuang Zhao Tao Xia Mei-Huan Zhao Tao Han Zheng Deng Man-Rong Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期523-527,共5页
The intricate correlation between multiple degrees of freedom and physical properties is a fascinating area in solid state chemistry and condensed matter physics.Here,we report a quantum-magnetic system BaNi_(2)V_(2)O... The intricate correlation between multiple degrees of freedom and physical properties is a fascinating area in solid state chemistry and condensed matter physics.Here,we report a quantum-magnetic system BaNi_(2)V_(2)O_(8)(BNVO),in which the spin correlation was modulated by unusual oxidation state,leading to different magnetic behavior.The BNVO was modified with topochemical reduction(TR)to yield TR-BNVO with partially reduced valance state of Ni^(+)in the two-dimensional NiO_(6)-honeycomb lattice.Accordingly,the antiferromagnetic order is suppressed by the introduction of locally interposed Ni^(+)and oxygen vacancies,resulting in a ferromagnetic ground state with the transition temperature up to 710 K.A positive magnetoresistance(7.5%)was observed in the TR-BNVO at 40 K under 7 T.These findings show that topological reduction is a powerful approach to engineer low-dimensional materials and accelerate the discovery of new quantum magnetism. 展开更多
关键词 Layered honeycomb oxide Topochemical reduction Oxygen vacancies ferromagnetISM MAGNETORESISTANCE
原文传递
Giant Magneto-Optical Effect in van der Waals Room-Temperature Ferromagnet Fe_(3)GaTe_(2)
17
作者 张晓敏 王健 +4 位作者 朱文凯 张佳茜 李伟浩 张菁 王开友 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期148-155,共8页
The discovery of ferromagnetic two-dimensional(2D)van der Waals(vdWs)materials provides an opportunity to explore intriguing physics and to develop innovative spin electronic devices.However,the main challenge for pra... The discovery of ferromagnetic two-dimensional(2D)van der Waals(vdWs)materials provides an opportunity to explore intriguing physics and to develop innovative spin electronic devices.However,the main challenge for practical applications of vd Ws ferromagnetic crystals lies in the weak intrinsic ferromagnetism and small perpendicular magnetic anisotropy(PMA)above room temperature.Here,we report the intrinsic vd Ws ferromagnetic crystal Fe_(3)GaTe_(2),synthesized by the self-flux method,exhibiting a Curie temperature(TC)of 370 K,a high saturation magnetization of 33.47 emu/g,and a large PMA energy density of approximately 4.17×10^(5)J/m^(3).Furthermore,the magneto-optical effect is systematically investigated in Fe_(3)GaTe_(2).The doubly degenerate E_(2g)(Γ)mode reverses the helicity of incident photons,indicating the existence of pseudoangular-momentum(PAM)and chirality.Meanwhile,the non-degenerate non-chiral A_(1g)(Γ)phonon exhibits a significant magneto-Raman effect under an external out-of-plane magnetic field.These results lay the groundwork for studying phonon chirality and magneto-optical phenomena in 2D magnetic materials,providing the feasibility for further fundamental research and applications in spintronic devices. 展开更多
关键词 field ferromagnetIC DEGENERATE
原文传递
Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
18
作者 Genhao Liang Hui Cao +6 位作者 Long Cheng Junkun Zha Mingrui Bao Fei Ye Hua Zhou Aidi Zhao Xiaofang Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期186-192,共7页
Coexistence of ferromagnetism and ferroelasticity in a single material is an intriguing phenomenon,but has been rarely found.Here we studied both the ferromagnetism and ferroelasticity in a group of LaCoO3 films with ... Coexistence of ferromagnetism and ferroelasticity in a single material is an intriguing phenomenon,but has been rarely found.Here we studied both the ferromagnetism and ferroelasticity in a group of LaCoO3 films with systematically tuned atomic structures.We found that all films exhibit ferroelastic domains with four-fold symmetry and the larger domain size(higher elasticity)is always accompanied by stronger ferromagnetism.We performed synchrotron x-ray diffraction studies to investigate the backbone structure of the CoO6 octahedra,and found that both the ferromagnetism and the elasticity are simultaneously enhanced when the in-plane Co–O–Co bond angles are straightened.Therefore the study demonstrates the inextricable correlation between the ferromagnetism and ferroelasticity mediated through the octahedral backbone structure,which may open up new possibilities to develop multifunctional materials. 展开更多
关键词 perovskite oxide film ferromagnetISM FERROELASTICITY twin domain
原文传递
Semiclassical approach to spin dynamics of a ferromagnetic S = 1 chain
19
作者 李承晨 崔祎 +1 位作者 于伟强 俞榕 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期95-100,共6页
Motivated by recent experimental progress on the quasi-one-dimensional quantum magnet Ni Nb2O6, we study the spin dynamics of an S = 1 ferromagnetic Heisenberg chain with single-ion anisotropy by using a semiclassical... Motivated by recent experimental progress on the quasi-one-dimensional quantum magnet Ni Nb2O6, we study the spin dynamics of an S = 1 ferromagnetic Heisenberg chain with single-ion anisotropy by using a semiclassical molecular dynamics approach. This system undergoes a quantum phase transition from a ferromagnetic to a paramagnetic state under a transverse magnetic field, and the magnetic response reflecting this transition is well described by our semiclassical method.We show that at low temperature the transverse component of the dynamical structure factor depicts clearly the magnon dispersion, and the longitudinal component exhibits two continua associated with single-and two-magnon excitations,respectively. These spin excitation spectra show interesting temperature dependence as effects of magnon interactions. Our findings shed light on the experimental detection of spin excitations in a large class of quasi-one-dimensional magnets. 展开更多
关键词 one-dimensional ferromagnetism spin dynamics magnon excitation molecular dynamics
原文传递
Gate Tunable Labyrinth Domain Structures in a van der Waals Itinerant Ferromagnet Cr_(7)Te_(8)
20
作者 Kui Meng Zeya Li +11 位作者 Yicheng Shen Xiangyu Bi Junhao Rao Yuting Qian Zhansheng Gao Peng Chen Caiyu Qiu Feng Qin Jinxiong Wu Feng Luo Junwei Huang Hongtao Yuan 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第9期122-132,共11页
Manipulating magnetic domain structure plays a key role in advanced spintronics devices.Theoretical rationale is that the labyrinthine domain structure,normally appearing in ferromagnetic thin films with strong magnet... Manipulating magnetic domain structure plays a key role in advanced spintronics devices.Theoretical rationale is that the labyrinthine domain structure,normally appearing in ferromagnetic thin films with strong magnetic anisotropy,shows a great potential to increase data storage density for designing magnetic nonvolatile memory and logic devices.However,an electrical control of labyrinthine domain structure remains elusive.Here,we demonstrate the gate-driven evolution of labyrinthine domain structures in an itinerant ferromagnet Cr_(7)Te_(8).By combining electric transport measurements and micromagnetic finite difference simulations,we find that the hysteresis loop of anomalous Hall effect in Cr_(7)Te_(8)samples shows distinct features corresponding to the generation of labyrinthine domain structures.The labyrinthine domain structures are found to be electrically tunable via Li-electrolyte gating,and such gate-driven evolution in Cr_(7)Te_(8)originates from the reduction of the magnetic anisotropic energy with gating,revealed by our micromagnetic simulations.Our results on the gate control of anomalous Hall effect in an itinerant magnetic material provide an opportunity to understand the formation and evolution of labyrinthine domain structures,paving a new route towards electric-field driven spintronics. 展开更多
关键词 RATIONAL ELECTROLYTE ferromagnetIC
原文传递
上一页 1 2 152 下一页 到第
使用帮助 返回顶部