Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.Th...Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.展开更多
BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventio...BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventions.AIM To evaluate the role of IgE in the exacerbation of allergic asthma and to determine the clinical efficacy of anti-IgE therapy in improving disease outcomes.Specifically,the study investigates changes in serum IgE levels,lung function,asthma control scores,and the frequency of acute exacerbations among patients receiving standard therapy with or without anti-IgE intervention.METHODS A total of 200 patients diagnosed with moderate to severe asthma were enrolled in this experimental study conducted from April 2024 to April 2025.Participants were randomized to receive either standard asthma therapy or therapy combined with anti-IgE agents.IgE levels and asthma control parameters were monitored.RESULTS Participants receiving anti-IgE treatment demonstrated a significant reduction in serum IgE levels(P<0.001),improved Forced expiratory volume in one second scores,and fewer exacerbation episodes compared to the control group.CONCLUSION IgE cells significantly contribute to asthma severity,and targeted therapy against IgE can improve disease outcomes.These findings underscore the importance of immunomodulatory strategies in asthma management.展开更多
Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent charac...Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent characteristics of these materials is essential for their effective use in various construction applications.This study presents an experimental evaluation of the compressive and bending properties of the UHPC incorporating polypropylene,steel,and glass fibers.Based on ACI-211 guidelines,the UHPC mix was designed by using three types of aggregates:limestone,andesite,and quartzite,along with 5%fiber content(at varying percentages of 0,5%,10%,15%,and 20%)relative to the cementitious materials,and three different water-to-cement(w/c)ratios(0.24,0.3,and 0.4)were used.In this research,the compressive and flexural strength tests were conducted.The results show that increasing the values of the fibers significantly enhances the compressive strength of the studied samples.Furthermore,the utilization of fibers markedly improves the bending strength of the samples,demonstrating a strong correlation with the yield resistance of the material.Also,findings show that using steel fibers increases the compressive and bending strength of the tested samples more than polypropylene and glass fibers.For instance,in UHPC samples with 0.4 w/c,the average compressive strength values are 82.2 MPa,70.3 MPa,and 67.1 MPa for steel,polypropylene,and glass fibers,respectively.Also,in the flexural strength test,the modulus of rupture is obtained as an average of 6.24 MPa,5.24 MPa and 4.83 MPa for UHPC samples with steel,polypropylene and glass fibers,respectively.展开更多
This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwent...This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.展开更多
A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a genera...A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a generated droplet jet of complex structure into a directed flow of evaporating droplets falling in a vertical tube.Images of falling droplets captured by a high-speed camera through a window in the vertical channel wall are used to determine the sizes and velocities of individual droplets.The computational modeling of droplet motion and evaporation proved useful at all stages of the experimental work:from selecting the position of the vertical channel to processing the experimental data.It was found that even a 0.1%mass concentration of the dissolved ionic salt KCl has a considerable effect on decreasing the evaporation rate of the droplets.In contrast,a typical fungicide with a mass concentration of 2.5%has only a slight impact on the evaporation rate.The laboratory results enabled the authors to refine the evaporation model of water droplets to account for the presence of dissolved substances.Modified models of this type are expected to be useful in controling crop spraying and also in other potential applications.展开更多
A cased well model consists of a coaxial tank and casing,which houses coaxially installed transmitting and receiving coils.The transmitting coil is excited by the current produced by the transmitting circuit,and trans...A cased well model consists of a coaxial tank and casing,which houses coaxially installed transmitting and receiving coils.The transmitting coil is excited by the current produced by the transmitting circuit,and transient electromagnetic responses occur in the casing,including direct coupling and casing responses.As the range between the transmitting and receiving coils increases,direct coupling responses decay rapidly,are less than the casing response at 0.3 m,and disappear at 0.7 m.By contrast,a casing response increases rapidly and then declines slowly after reaching a peak and changes little within a specifi c range.The peak decreases slowly with range.The continuous addition of water to the tank causes slight changes in transient electromagnetic responses,so the diff erence which are subtracted from the response without water is used.Moreover,the diff erences at the time of rapid increase in response and the time of rapid decrease in response are large,forming a peak and a trough.Given that the conductivity of water in a full tank changes after the addition of salt,the diff erence in the peak is linear with the increase in the conductivity of water.This result provides an experimental basis for the design of a transient electromagnetic logging instrument that measures the conductivity of formation in cased well.展开更多
Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ...Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.展开更多
Floating breakwaters(FBs)are commonly employed for the protection of coastal installations.In this work,a convextype floating breakwater(FB)is proposed,and its hydrodynamic characteristics are studied through systemat...Floating breakwaters(FBs)are commonly employed for the protection of coastal installations.In this work,a convextype floating breakwater(FB)is proposed,and its hydrodynamic characteristics are studied through systematic laboratory experiments.Two different deck widths and two different mooring systems are set in the experiment.The transmission coefficients,reflection coefficients,motion responses and mooring forces of convex-type FBs are obtained in experiments.The influences of the deck width and mooring system on the hydrodynamic characteristics of the proposed FB are analyzed and compared.The experimental results show that the reflection coefficient and mooring force of the convex-type FB with a cross-mooring system are significantly larger than those of the convextype FB with a parallel-mooring system.A convex-type FB with a larger deck width has a higher reflection coefficient.The convex-type FBs with cross-and parallel-mooring systems have similar surge and heave motions,but the cross-mooring results in small roll motion.In addition,reliable prediction formulas for the transmission coefficient of convex-type FBs with different mooring systems have been developed,which are important for engineering design.展开更多
Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states.It improves safety and reduces the ...Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states.It improves safety and reduces the probability of catastrophic behavior in case of accidents.Equilibrium damage accumulation in some cases leads to a falling part(called a postcritical stage)on the material’s stress-strain curve.It must be taken into account to assess the strength and deformation limits of composite structures.Digital image correlation method,acoustic emission(AE)signals recording,and optical microscopy were used in this paper to study the deformation and failure processes of an orthogonal-layup composite during tension in various directions to orthotropy axes.An elastic-plastic deformation model was proposed for the composite in a plane stress condition.The evolution of strain fields and neck formation were analyzed.The staging of the postcritical deformation process was described.AE signals obtained during tests were studied;characteristic damage types of a material were defined.The rationality and necessity of polymer composites’postcritical deformation stage taken into account in refined strength analysis of structures were concluded.展开更多
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical cha...Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.展开更多
Background:Cognitive stimulation therapy(CST)is a non-pharmacological intervention designed to improve cognitive function and emotional well-being in individuals with dementia.However,limited studies have evaluated it...Background:Cognitive stimulation therapy(CST)is a non-pharmacological intervention designed to improve cognitive function and emotional well-being in individuals with dementia.However,limited studies have evaluated its efficacy in Chinese-speaking populations.This study aimed to assess the effects of a 12-week cognitive stimulation interventiononcognitive functionanddepression inolder adultswithmilddementia.Methods:This quasiexperimental study employed a repeated measures design with a non-randomized experimental and control group.Participants(N=40)65 years and older with mild dementia(clinical dementia rating(CDR)=0.5–1)were recruited from a regional hospital and dementia care center in Taiwan.The experimental group(n=20)received a structured CST intervention for 12 weeks(two sessions per week,120 min per session),while the control group(n=20)received routine care.Cognitive function was assessed using the Saint Louis University Mental Status(SLUMS)exam,and depression was measured using the Chinese version of the Cornell Scale for Depression in Dementia(CSDD-C).Data were collected at baseline,4,8,and 12 weeks and analyzed using repeatedmeasures ANOVA and generalized estimating equation(GEE)modeling.Results:The experimental group showed significant improvements in cognitive function compared to the control group(SLUMS score:baseline 16.1±4.8 to 12th week 19.3±5.0,p<0.001).Depression levels decreased significantly in the experimental group but not in the control group(p<0.05).The GEE analysis showed that the improvement in cognitive function was positively associated with education level and duration,but declined with increasing age.Similarly,depression was lower in participants with higher educational levels and inmen.Conclusions:The findings support the efficacy of CST in improving cognitive function and reducing depression in older adults with mild dementia.The results highlight the importance of the duration of the intervention and individual cognitive reserve in modulating treatment outcomes.展开更多
This paper presents a comprehensive experimental and numerical investigation of radiant floor heating(RFH)systems integrated with phase changematerial(PCM)-based thermal energy storage(TES).The study compares two unde...This paper presents a comprehensive experimental and numerical investigation of radiant floor heating(RFH)systems integrated with phase changematerial(PCM)-based thermal energy storage(TES).The study compares two underfloor pipe configurations:double serpentine and spiral.It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq.Key performance indicators including discharge temperature,heat transfer rate,liquid fraction evolution,and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations.Results demonstrate that the spiral design provides slightly more uniform temperature distribution on the tile surface at an inlet water temperature of 55℃,with an average difference of approximately 0.5%,the serpentine layout exhibits higher slab temperature distribution by about 0.66%.Notably,the serpentine configuration shows superior thermal homogeneity and heat distribution,with a 15.05%increase in heat gain at a 55℃ inlet temperature compared to the spiral design.The performance gap between the two layouts narrows as the inlet temperature increases from 50℃ in 5℃ increments by approximately 4.1%,3.7%,and 1.7%,respectively.Higher inlet temperatures also improve PCM discharging and charging rates,improving energy storage utilization.The findings provide significant design guidelines for sustainable heating systems for cold climates.展开更多
Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blade...The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.展开更多
This paper deals with an experimental study on dynamic fracture speed of three point bending specimen and cylindrical specimen made of epoxy resin by means of silver conductive painting grid. According to the test res...This paper deals with an experimental study on dynamic fracture speed of three point bending specimen and cylindrical specimen made of epoxy resin by means of silver conductive painting grid. According to the test results ,the relations between fracture load ,fracture speed and loading speed are discussed and the features of final fracture surfaces are analysed in detail.展开更多
The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves...The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves are conducted on mild beaches with different slopes in a wave basin. A numerical model is established, which includes a wave propagation model, a wave breaking model and a long-shore current model. The validity of the numerical model is proved by the comparison of its results with the results of the experimental model. It is concluded that the wave-ioduced long-shore current is influenced significantly by the incident wave height, the wave angle and the beach slope. Its application to the Bohai Bay indicates that the wave-induced currents have the same order of magnitude as the tide currents in the near-shore zone of mill slope beach. In the design of wastewater ouffall locations on a mild-slope beach with shallow water of the Bohai Bay, the position of the outfall should be 10 km away from the shoreline, which is outside of the surf-zone.展开更多
A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this expe...A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.展开更多
A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the ex...A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.展开更多
This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect...This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.展开更多
基金supported by the Hundred Talents Programof the Chinese Academy of Sciences,the Pre-Research Project JZX7Y20220414101801the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB35000000)the National Natural Science Foundation Projects(No.51806231).
文摘Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.
文摘BACKGROUND IgE plays a critical role in allergic inflammation and asthma pathogenesis.This study investigates the involvement of IgE cells in asthma exacerbation and evaluates the effectiveness of targeted interventions.AIM To evaluate the role of IgE in the exacerbation of allergic asthma and to determine the clinical efficacy of anti-IgE therapy in improving disease outcomes.Specifically,the study investigates changes in serum IgE levels,lung function,asthma control scores,and the frequency of acute exacerbations among patients receiving standard therapy with or without anti-IgE intervention.METHODS A total of 200 patients diagnosed with moderate to severe asthma were enrolled in this experimental study conducted from April 2024 to April 2025.Participants were randomized to receive either standard asthma therapy or therapy combined with anti-IgE agents.IgE levels and asthma control parameters were monitored.RESULTS Participants receiving anti-IgE treatment demonstrated a significant reduction in serum IgE levels(P<0.001),improved Forced expiratory volume in one second scores,and fewer exacerbation episodes compared to the control group.CONCLUSION IgE cells significantly contribute to asthma severity,and targeted therapy against IgE can improve disease outcomes.These findings underscore the importance of immunomodulatory strategies in asthma management.
文摘Ultrahigh-performance concrete(UHPC)is a groundbreaking kind of concrete that distinguishes itself from conventional concrete through its unique material properties.Understanding and managing the time-dependent characteristics of these materials is essential for their effective use in various construction applications.This study presents an experimental evaluation of the compressive and bending properties of the UHPC incorporating polypropylene,steel,and glass fibers.Based on ACI-211 guidelines,the UHPC mix was designed by using three types of aggregates:limestone,andesite,and quartzite,along with 5%fiber content(at varying percentages of 0,5%,10%,15%,and 20%)relative to the cementitious materials,and three different water-to-cement(w/c)ratios(0.24,0.3,and 0.4)were used.In this research,the compressive and flexural strength tests were conducted.The results show that increasing the values of the fibers significantly enhances the compressive strength of the studied samples.Furthermore,the utilization of fibers markedly improves the bending strength of the samples,demonstrating a strong correlation with the yield resistance of the material.Also,findings show that using steel fibers increases the compressive and bending strength of the tested samples more than polypropylene and glass fibers.For instance,in UHPC samples with 0.4 w/c,the average compressive strength values are 82.2 MPa,70.3 MPa,and 67.1 MPa for steel,polypropylene,and glass fibers,respectively.Also,in the flexural strength test,the modulus of rupture is obtained as an average of 6.24 MPa,5.24 MPa and 4.83 MPa for UHPC samples with steel,polypropylene and glass fibers,respectively.
基金supported by grants from National High-Level Hospital Clinical Research Funding(2023-GSP-RC-04).
文摘This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.
基金financially supported by the Russian Science Foundation(project No.24-29-00303:https://rscf.ru/project/24-29-00303/,accessed on 01 July 2025).
文摘A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a generated droplet jet of complex structure into a directed flow of evaporating droplets falling in a vertical tube.Images of falling droplets captured by a high-speed camera through a window in the vertical channel wall are used to determine the sizes and velocities of individual droplets.The computational modeling of droplet motion and evaporation proved useful at all stages of the experimental work:from selecting the position of the vertical channel to processing the experimental data.It was found that even a 0.1%mass concentration of the dissolved ionic salt KCl has a considerable effect on decreasing the evaporation rate of the droplets.In contrast,a typical fungicide with a mass concentration of 2.5%has only a slight impact on the evaporation rate.The laboratory results enabled the authors to refine the evaporation model of water droplets to account for the presence of dissolved substances.Modified models of this type are expected to be useful in controling crop spraying and also in other potential applications.
基金supported by the National Natural Science Foundation of China (grant nos. 42074137)。
文摘A cased well model consists of a coaxial tank and casing,which houses coaxially installed transmitting and receiving coils.The transmitting coil is excited by the current produced by the transmitting circuit,and transient electromagnetic responses occur in the casing,including direct coupling and casing responses.As the range between the transmitting and receiving coils increases,direct coupling responses decay rapidly,are less than the casing response at 0.3 m,and disappear at 0.7 m.By contrast,a casing response increases rapidly and then declines slowly after reaching a peak and changes little within a specifi c range.The peak decreases slowly with range.The continuous addition of water to the tank causes slight changes in transient electromagnetic responses,so the diff erence which are subtracted from the response without water is used.Moreover,the diff erences at the time of rapid increase in response and the time of rapid decrease in response are large,forming a peak and a trough.Given that the conductivity of water in a full tank changes after the addition of salt,the diff erence in the peak is linear with the increase in the conductivity of water.This result provides an experimental basis for the design of a transient electromagnetic logging instrument that measures the conductivity of formation in cased well.
基金supported by the National Natural Science Foundation of China(No.12002102)。
文摘Cold-flow experiments on planar Expansion Deflection(ED)nozzle flows are conducted under a simulated startup-shutdown process of rocket motors.The purpose is to investigate the flow and performance characteristics in ED nozzles,capture the behavior of shock flapping,and explore asymmetric flow dynamics utilizing a symmetric nozzle.A total pressure condition,characterized by rapid rise followed by a slow fall,is employed to simulate the continuous startup and shutdown processes.The schlieren imaging technique and high-frequency pressure transducers are employed to obtain the flow information.The experimental results indicate that the flow characteristics differ between the startup and shutdown processes with a hysteresis observed in the nozzle wake mode transition.During the startup process,the shock waves are pushed outward of the nozzle,while during the shutdown process,the flow propagates inward dominated by Mach stems.Counterintuitive results are demonstrated,namely,the mode transition is not the cause of the sudden thrust decrease,and the moment of maximum thrust does not coincide with the moment of maximum total pressure.During the operation of the nozzle,two stages of shock wave flapping occur,accompanied by significant wall pressure oscillations.These oscillation frequencies are demonstrated to be related to the inherent acoustic frequencies of the test chamber.An improved pressure ratio method is proposed to predict the position of the shock oscillation separation point.The prediction results revealed the shock behavior during the flapping process.
基金financially supported by the National Natural Science Foundation of China(Grant No.52088102)New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Floating breakwaters(FBs)are commonly employed for the protection of coastal installations.In this work,a convextype floating breakwater(FB)is proposed,and its hydrodynamic characteristics are studied through systematic laboratory experiments.Two different deck widths and two different mooring systems are set in the experiment.The transmission coefficients,reflection coefficients,motion responses and mooring forces of convex-type FBs are obtained in experiments.The influences of the deck width and mooring system on the hydrodynamic characteristics of the proposed FB are analyzed and compared.The experimental results show that the reflection coefficient and mooring force of the convex-type FB with a cross-mooring system are significantly larger than those of the convextype FB with a parallel-mooring system.A convex-type FB with a larger deck width has a higher reflection coefficient.The convex-type FBs with cross-and parallel-mooring systems have similar surge and heave motions,but the cross-mooring results in small roll motion.In addition,reliable prediction formulas for the transmission coefficient of convex-type FBs with different mooring systems have been developed,which are important for engineering design.
基金This work was supported by the Russian Science Foundation(Grant No.22-19-00765)at the Perm National Research Polytechnic University.
文摘Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states.It improves safety and reduces the probability of catastrophic behavior in case of accidents.Equilibrium damage accumulation in some cases leads to a falling part(called a postcritical stage)on the material’s stress-strain curve.It must be taken into account to assess the strength and deformation limits of composite structures.Digital image correlation method,acoustic emission(AE)signals recording,and optical microscopy were used in this paper to study the deformation and failure processes of an orthogonal-layup composite during tension in various directions to orthotropy axes.An elastic-plastic deformation model was proposed for the composite in a plane stress condition.The evolution of strain fields and neck formation were analyzed.The staging of the postcritical deformation process was described.AE signals obtained during tests were studied;characteristic damage types of a material were defined.The rationality and necessity of polymer composites’postcritical deformation stage taken into account in refined strength analysis of structures were concluded.
文摘Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.
基金supported by a grant from Chung Shan Medical University(Grant No.:CSMUINT-109-06).
文摘Background:Cognitive stimulation therapy(CST)is a non-pharmacological intervention designed to improve cognitive function and emotional well-being in individuals with dementia.However,limited studies have evaluated its efficacy in Chinese-speaking populations.This study aimed to assess the effects of a 12-week cognitive stimulation interventiononcognitive functionanddepression inolder adultswithmilddementia.Methods:This quasiexperimental study employed a repeated measures design with a non-randomized experimental and control group.Participants(N=40)65 years and older with mild dementia(clinical dementia rating(CDR)=0.5–1)were recruited from a regional hospital and dementia care center in Taiwan.The experimental group(n=20)received a structured CST intervention for 12 weeks(two sessions per week,120 min per session),while the control group(n=20)received routine care.Cognitive function was assessed using the Saint Louis University Mental Status(SLUMS)exam,and depression was measured using the Chinese version of the Cornell Scale for Depression in Dementia(CSDD-C).Data were collected at baseline,4,8,and 12 weeks and analyzed using repeatedmeasures ANOVA and generalized estimating equation(GEE)modeling.Results:The experimental group showed significant improvements in cognitive function compared to the control group(SLUMS score:baseline 16.1±4.8 to 12th week 19.3±5.0,p<0.001).Depression levels decreased significantly in the experimental group but not in the control group(p<0.05).The GEE analysis showed that the improvement in cognitive function was positively associated with education level and duration,but declined with increasing age.Similarly,depression was lower in participants with higher educational levels and inmen.Conclusions:The findings support the efficacy of CST in improving cognitive function and reducing depression in older adults with mild dementia.The results highlight the importance of the duration of the intervention and individual cognitive reserve in modulating treatment outcomes.
文摘This paper presents a comprehensive experimental and numerical investigation of radiant floor heating(RFH)systems integrated with phase changematerial(PCM)-based thermal energy storage(TES).The study compares two underfloor pipe configurations:double serpentine and spiral.It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq.Key performance indicators including discharge temperature,heat transfer rate,liquid fraction evolution,and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations.Results demonstrate that the spiral design provides slightly more uniform temperature distribution on the tile surface at an inlet water temperature of 55℃,with an average difference of approximately 0.5%,the serpentine layout exhibits higher slab temperature distribution by about 0.66%.Notably,the serpentine configuration shows superior thermal homogeneity and heat distribution,with a 15.05%increase in heat gain at a 55℃ inlet temperature compared to the spiral design.The performance gap between the two layouts narrows as the inlet temperature increases from 50℃ in 5℃ increments by approximately 4.1%,3.7%,and 1.7%,respectively.Higher inlet temperatures also improve PCM discharging and charging rates,improving energy storage utilization.The findings provide significant design guidelines for sustainable heating systems for cold climates.
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
文摘The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.
文摘This paper deals with an experimental study on dynamic fracture speed of three point bending specimen and cylindrical specimen made of epoxy resin by means of silver conductive painting grid. According to the test results ,the relations between fracture load ,fracture speed and loading speed are discussed and the features of final fracture surfaces are analysed in detail.
文摘The long-shore current distribution on a mild slope beach is studied by combining the numerical model and the physical experiment. The experiments of long-shore currents under the action of regular and irregular waves are conducted on mild beaches with different slopes in a wave basin. A numerical model is established, which includes a wave propagation model, a wave breaking model and a long-shore current model. The validity of the numerical model is proved by the comparison of its results with the results of the experimental model. It is concluded that the wave-ioduced long-shore current is influenced significantly by the incident wave height, the wave angle and the beach slope. Its application to the Bohai Bay indicates that the wave-induced currents have the same order of magnitude as the tide currents in the near-shore zone of mill slope beach. In the design of wastewater ouffall locations on a mild-slope beach with shallow water of the Bohai Bay, the position of the outfall should be 10 km away from the shoreline, which is outside of the surf-zone.
基金supported by the China Postdoctoral Science Foundation(Grant No.2012M511192)the National Natural Science Foundation of China(Grant Nos.51209080 and 51061130547+5 种基金Open Fund of State Key Laboratory of Coastaland Off shore Engineering(Grant No.LP1207the Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering(Grant No.1213)Qing Lan Project and 333 Project of Jiangsu Province(Grant No.BRA2012130)the Fundamental Research Funds for the Central Universities(Hohai University,Grant No.2012B06514the 111 Project(Grant No.B12032)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120181110084)
文摘A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.
文摘A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material(LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China's Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2 5 L/m^2 The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.
基金supported by the National Natural Science Foundation of China(Grant No.50905187)the Shandong Provincial Natural Science Foundation(Grant No.ZR2009FQ001)
文摘This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.