In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomts...In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.展开更多
In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial diff...In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial differential equations in mathematical physics. As a result, some new exact solutions for them are successfully established. It is indicated that the solutions obtained by the Exp-function method are reliable, straightforward and effective method for strongly nonlinear fractional partial equations with modified Riemann-Liouville derivative by Jumarie's. This approach can also be applied to other nonlinear time and space fractional differential equations.展开更多
Recently,the authors of[Commun.Theor.Phys.56(2011)397]made a number of useful observations on Exp-function method.In this study,we focus on another vital issue,namely,the misleading results of double Exp-function method.
This paper applies the EXP-function method to find exact solutions of various nonlinear equations. Tzitzeica- Dodd-Bullough (TDB) equation was selected to illustrate the effectiveness and convenience of the suggested ...This paper applies the EXP-function method to find exact solutions of various nonlinear equations. Tzitzeica- Dodd-Bullough (TDB) equation was selected to illustrate the effectiveness and convenience of the suggested method. More generalized solitonary solutions with free parameters were obtained by suitable choice of the free parameters, and also the obtained solitonary solutions can be converted into periodic solutions.展开更多
We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analyti...We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.展开更多
This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method p...This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method provides a mathematical tool for solving the nonlinear evolution equation in mathematical physics.展开更多
Recently, many important nonlinear partial differential equations arising in the applied physical and mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we...Recently, many important nonlinear partial differential equations arising in the applied physical and mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we present some shortcomings of this method by analyzing the results of recently published papers. We also discuss the possible improvement of the effectiveness of the method.展开更多
In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a se...In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a series of general solutions in forms of Exp-function.展开更多
In this paper, we apply Exp-function method to give traveling wave solutions of second order sine-Bratu type equations. This method is straightforward, concise and effective.
In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructi...In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.展开更多
In the present paper,we build the new analytical exact solutions of a nonlinear differential equation,specifically,coupled Boussinesq-Burgers equations by means of Exp-function method.Then,we analyze the results by pl...In the present paper,we build the new analytical exact solutions of a nonlinear differential equation,specifically,coupled Boussinesq-Burgers equations by means of Exp-function method.Then,we analyze the results by plotting the three dimensional soliton graphs for each case,which exhibit the simplicity and effectiveness of the proposed method.The primary purpose of this paper is to employ a new approach,which allows us victorious and efficient derivation of the new analytical exact solutions for the coupled Boussinesq-Burgers equations.展开更多
In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different ...In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different types of exact solutions are extracted by this method. It is shown that the Exp-function method is a powerful analytical method for solving other nonlinear equations occurring in nonlinear physical phenomena. Results are presented in contour plots that show the different values of effective parameters on the velocity profiles.展开更多
In this work, it is aimed to find one- and two-soliton solutions to nonlinear Tzitzeica-Dodd-Bullough (TDB) equation. Since the double exp-function method has been widely used to solve several nonlinear evolution eq...In this work, it is aimed to find one- and two-soliton solutions to nonlinear Tzitzeica-Dodd-Bullough (TDB) equation. Since the double exp-function method has been widely used to solve several nonlinear evolution equations in mathematical physics, we have also used it with the help of symbolic computation for solving the present equation. The method seems to be easier and more accurate thanks to the recent developments in the field of symbolic computation.展开更多
This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subseq...This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subsequent numerical results re-identify the effectiveness of proposed algorithm. It is pragmatic that recommended plan is greatly consistent and may be comprehensive to other nonlinear differential equations of fractional order.展开更多
In this paper,the Exp-function method is used to construct exact solitary wave solutions for the generalized Burgers-Fisher equation with nonlinear terms of any order.With the aid of Maple computation,we obtain many n...In this paper,the Exp-function method is used to construct exact solitary wave solutions for the generalized Burgers-Fisher equation with nonlinear terms of any order.With the aid of Maple computation,we obtain many new and more general exact solitary wave solutions expressed by various exponential and hyperbolic functions.Our results can successfully recover previously known solitary wave solutions that have been found by the tanh-function method and other more sophisticated methods.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
文摘In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.
文摘In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial differential equations in mathematical physics. As a result, some new exact solutions for them are successfully established. It is indicated that the solutions obtained by the Exp-function method are reliable, straightforward and effective method for strongly nonlinear fractional partial equations with modified Riemann-Liouville derivative by Jumarie's. This approach can also be applied to other nonlinear time and space fractional differential equations.
文摘Recently,the authors of[Commun.Theor.Phys.56(2011)397]made a number of useful observations on Exp-function method.In this study,we focus on another vital issue,namely,the misleading results of double Exp-function method.
文摘This paper applies the EXP-function method to find exact solutions of various nonlinear equations. Tzitzeica- Dodd-Bullough (TDB) equation was selected to illustrate the effectiveness and convenience of the suggested method. More generalized solitonary solutions with free parameters were obtained by suitable choice of the free parameters, and also the obtained solitonary solutions can be converted into periodic solutions.
文摘We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.
基金Supported by the National Natural Science Foundation of China(91024026,10975126)Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(200934021100 32)
文摘This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method provides a mathematical tool for solving the nonlinear evolution equation in mathematical physics.
文摘Recently, many important nonlinear partial differential equations arising in the applied physical and mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we present some shortcomings of this method by analyzing the results of recently published papers. We also discuss the possible improvement of the effectiveness of the method.
基金National Natural Science Foundation of China under Grant No.10671121
文摘In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a series of general solutions in forms of Exp-function.
文摘In this paper, we apply Exp-function method to give traveling wave solutions of second order sine-Bratu type equations. This method is straightforward, concise and effective.
文摘In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.
文摘In the present paper,we build the new analytical exact solutions of a nonlinear differential equation,specifically,coupled Boussinesq-Burgers equations by means of Exp-function method.Then,we analyze the results by plotting the three dimensional soliton graphs for each case,which exhibit the simplicity and effectiveness of the proposed method.The primary purpose of this paper is to employ a new approach,which allows us victorious and efficient derivation of the new analytical exact solutions for the coupled Boussinesq-Burgers equations.
文摘In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different types of exact solutions are extracted by this method. It is shown that the Exp-function method is a powerful analytical method for solving other nonlinear equations occurring in nonlinear physical phenomena. Results are presented in contour plots that show the different values of effective parameters on the velocity profiles.
文摘In this work, it is aimed to find one- and two-soliton solutions to nonlinear Tzitzeica-Dodd-Bullough (TDB) equation. Since the double exp-function method has been widely used to solve several nonlinear evolution equations in mathematical physics, we have also used it with the help of symbolic computation for solving the present equation. The method seems to be easier and more accurate thanks to the recent developments in the field of symbolic computation.
文摘This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subsequent numerical results re-identify the effectiveness of proposed algorithm. It is pragmatic that recommended plan is greatly consistent and may be comprehensive to other nonlinear differential equations of fractional order.
基金Supported by the National Natural Science Foundation of China (No.10971169)
文摘In this paper,the Exp-function method is used to construct exact solitary wave solutions for the generalized Burgers-Fisher equation with nonlinear terms of any order.With the aid of Maple computation,we obtain many new and more general exact solitary wave solutions expressed by various exponential and hyperbolic functions.Our results can successfully recover previously known solitary wave solutions that have been found by the tanh-function method and other more sophisticated methods.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.