Drought at the grain filling stage of wheat will cause premature leaf senescence, thus leading to considerable loss of wheat yield. Therefore, this paper aims to establish a cultivation technology for strong drought r...Drought at the grain filling stage of wheat will cause premature leaf senescence, thus leading to considerable loss of wheat yield. Therefore, this paper aims to establish a cultivation technology for strong drought resistance, delayed senescence, and yield improvement based on the analysis of hormones homeostasis obtained by applying chemical control substances. Experiments were conducted with two genotypes of wheat. Four water irrigation treatments were applied to impose the water deficit, including well-watered control treatment(WW), mild water deficit(MiWD), moderate water deficit(MoWD), and severe water deficit(SWD). Exogenous abscisic acid(ABA) was sprayed on the plants at the anthesis stage of the wheat. As a result, exogenous ABA reduced initial senescence rate(r0), total duration of chlorophyll(Chltotal), rapid senescence phase(Chlloss), and the accumulated temperature at an inflection point(M) but improved the persistence phase(Chlper) of flag leaves under all of the four treatments. However, exogenous ABA produced inconsistent effects on photoassimilate relocation and grain weight under different treatments. It produced positive regulatory effects on grain weight under WW, MiWD, and MoWD treatments. On the one hand, spraying ABA during the persistence phase of flag leaves reduced the ratios of zeatin to gibberellin(Z/GA3), spermine to spermidine(Spm/Spd), and salicylic acid to ABA(SA/ABA),which prolonged active photosynthesis by stimulating high level of proline(Pro) and increased the activities of antioxidant enzymes, such as superoxide dismutase(SOD), peroxidase(POD), catalase(CAT), and ascorbate peroxidase(APX). Therefore, drought tolerance was enhanced, and more photosynthetic assimilates were accumulated. On the other hand, the rapid senescence phase and the transport rate of assimilates into grains were accelerated, resulting in higher grain weight, yield, and water use efficiency(WUE). However, under SWD treatment, exogenous ABA improved the ratio of SA/ABA, leading to low Pro content and low antioxidant enzyme activity of flag leaves in the rapid loss phase. Meanwhile,drought resistance declined and the transport duration of assimilates into grains was shortened, thus making photosynthetic assimilates redundant. Therefore, exogenous ABA can lead to the reduction in grain weight, yield, and WUE of wheat under SWD treatment.展开更多
The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG) treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolyt...The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG) treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolytic ATPase in plasma membranes and H^+-pumping responses in soybean seeds were investigated during PEG treatments. Effects of exogenous calcium and exogenous ABA on the hydrolytic ATPase were also examined in order to understand the mechanism of chilling resistance. Highly purified plasma membranes were isolated by 6.0% aqueous two-phase partitioning from soybean seeds, as judged by the sensitivity of hydrolytic ATPase to sodium vanadate. PEG treatment resulted in a slight increase of the hydrolytic ATPase activity in 12 h. Then the activity decreased gradually, but still higher than the control. The H^+-pumping activity increased steadily during PEG treatment. Exogenous calcium had both activating and inhibiting effects on the hydrolytic ATPase, but the activity was inhibited in soybean seeds treated with exogenous ABA. Results suggested that PEG treatment, not the exogenous calcium and ABA, up-regulated H^+-ATPase activities in soybean seeds.展开更多
基金supported by the National Key Research and Development Program of China(grant Nos.:2017YFD0301001 and 2016YFD0300403)the Shandong Province Mount Tai Industrial Talents Programthe National Natural Science Foundation of China(grant No.:31801295)。
文摘Drought at the grain filling stage of wheat will cause premature leaf senescence, thus leading to considerable loss of wheat yield. Therefore, this paper aims to establish a cultivation technology for strong drought resistance, delayed senescence, and yield improvement based on the analysis of hormones homeostasis obtained by applying chemical control substances. Experiments were conducted with two genotypes of wheat. Four water irrigation treatments were applied to impose the water deficit, including well-watered control treatment(WW), mild water deficit(MiWD), moderate water deficit(MoWD), and severe water deficit(SWD). Exogenous abscisic acid(ABA) was sprayed on the plants at the anthesis stage of the wheat. As a result, exogenous ABA reduced initial senescence rate(r0), total duration of chlorophyll(Chltotal), rapid senescence phase(Chlloss), and the accumulated temperature at an inflection point(M) but improved the persistence phase(Chlper) of flag leaves under all of the four treatments. However, exogenous ABA produced inconsistent effects on photoassimilate relocation and grain weight under different treatments. It produced positive regulatory effects on grain weight under WW, MiWD, and MoWD treatments. On the one hand, spraying ABA during the persistence phase of flag leaves reduced the ratios of zeatin to gibberellin(Z/GA3), spermine to spermidine(Spm/Spd), and salicylic acid to ABA(SA/ABA),which prolonged active photosynthesis by stimulating high level of proline(Pro) and increased the activities of antioxidant enzymes, such as superoxide dismutase(SOD), peroxidase(POD), catalase(CAT), and ascorbate peroxidase(APX). Therefore, drought tolerance was enhanced, and more photosynthetic assimilates were accumulated. On the other hand, the rapid senescence phase and the transport rate of assimilates into grains were accelerated, resulting in higher grain weight, yield, and water use efficiency(WUE). However, under SWD treatment, exogenous ABA improved the ratio of SA/ABA, leading to low Pro content and low antioxidant enzyme activity of flag leaves in the rapid loss phase. Meanwhile,drought resistance declined and the transport duration of assimilates into grains was shortened, thus making photosynthetic assimilates redundant. Therefore, exogenous ABA can lead to the reduction in grain weight, yield, and WUE of wheat under SWD treatment.
基金Supported by the National Natural Science Foundation of China (Grant No. 30170100)
文摘The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG) treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolytic ATPase in plasma membranes and H^+-pumping responses in soybean seeds were investigated during PEG treatments. Effects of exogenous calcium and exogenous ABA on the hydrolytic ATPase were also examined in order to understand the mechanism of chilling resistance. Highly purified plasma membranes were isolated by 6.0% aqueous two-phase partitioning from soybean seeds, as judged by the sensitivity of hydrolytic ATPase to sodium vanadate. PEG treatment resulted in a slight increase of the hydrolytic ATPase activity in 12 h. Then the activity decreased gradually, but still higher than the control. The H^+-pumping activity increased steadily during PEG treatment. Exogenous calcium had both activating and inhibiting effects on the hydrolytic ATPase, but the activity was inhibited in soybean seeds treated with exogenous ABA. Results suggested that PEG treatment, not the exogenous calcium and ABA, up-regulated H^+-ATPase activities in soybean seeds.