In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex trans...In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential equations into nonlinear ordinary differential equations. Afterwards, modified simple equation method has been implemented, to find the exact solutions of these equations, in the sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equation have been discussed. Moreover, it can also be concluded that the proposed method is easy, direct and concise as compared to other existing methods.展开更多
In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial diff...In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial differential equations in mathematical physics. As a result, some new exact solutions for them are successfully established. It is indicated that the solutions obtained by the Exp-function method are reliable, straightforward and effective method for strongly nonlinear fractional partial equations with modified Riemann-Liouville derivative by Jumarie's. This approach can also be applied to other nonlinear time and space fractional differential equations.展开更多
In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direc...In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direct and concise as compared with other existent methods.展开更多
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This me...In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method,we apply this method to solve the space-time fractional Whitham–Broer–Kaup(WBK) equations and the nonlinear fractional Sharma–Tasso–Olever(STO) equation, and as a result, some new exact solutions for them are obtained.展开更多
In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this met...In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this method to fractional KdV-type and fractional Telegraph equations and obtain the tangent and cotangent functions solutions of these fractional equations for the first time.展开更多
Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integ...Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.展开更多
In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified...In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified Benjamin-Bona- Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional deriva- tives are described in the modified Riemann-Liouville sense.展开更多
文摘In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential equations into nonlinear ordinary differential equations. Afterwards, modified simple equation method has been implemented, to find the exact solutions of these equations, in the sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equation have been discussed. Moreover, it can also be concluded that the proposed method is easy, direct and concise as compared to other existing methods.
文摘In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial differential equations in mathematical physics. As a result, some new exact solutions for them are successfully established. It is indicated that the solutions obtained by the Exp-function method are reliable, straightforward and effective method for strongly nonlinear fractional partial equations with modified Riemann-Liouville derivative by Jumarie's. This approach can also be applied to other nonlinear time and space fractional differential equations.
文摘In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direct and concise as compared with other existent methods.
基金Supported by Natural Science Foundation of Shandong Province of China under Grant No.ZR2013AQ009National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No.201310433031Doctoral initializing Foundation of Shandong University of Technology of China under Grant No.4041-413030
文摘In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method,we apply this method to solve the space-time fractional Whitham–Broer–Kaup(WBK) equations and the nonlinear fractional Sharma–Tasso–Olever(STO) equation, and as a result, some new exact solutions for them are obtained.
文摘In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this method to fractional KdV-type and fractional Telegraph equations and obtain the tangent and cotangent functions solutions of these fractional equations for the first time.
文摘Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.
文摘In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified Benjamin-Bona- Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional deriva- tives are described in the modified Riemann-Liouville sense.