This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the re...This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm.展开更多
In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the...In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.展开更多
Fusion-Riesz frame (Riesz frame of subspace) whose all subsets are fusion frame sequences with the same bounds is a special fusion frame. It is also considered a generalization of Riesz frame since it shares some impo...Fusion-Riesz frame (Riesz frame of subspace) whose all subsets are fusion frame sequences with the same bounds is a special fusion frame. It is also considered a generalization of Riesz frame since it shares some important properties of Riesz frame. In this paper, we show a part of these properties of fusion-Riesz frame and the new results about the stabilities of fusion-Riesz frames under operator perturbation (simple named operator perturbation of fusion-Riesz frames). Moreover, we also compare the operator perturbation of fusion-Riesz frame with that of fusion frame, fusion-Riesz basis (also called Riesz decomposition or Riesz fusion basis) and exact fusion frame.展开更多
A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, ...A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, thereby constructing a frame for the whole space by joining sequences of frames for subspaces. Moreover the notion of fusion frames provide a framework for applications and providing efficient and robust information processing algorithms.In this paper we study the conditions under which removing an element from a fusion frame, again we obtain another fusion frame. We give another proof of [5, Corollary 3.3(iii)] with extra information about the bounds.展开更多
文摘This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm.
文摘In this paper exact solution for a homogenous incompressible, second grade fluid in a rotating frame through porous media has been provided using hodograph-Legendre transformation method. Results are summarised in the form of theorems. Two examples have been taken and streamline patterns are shown for the solutions.
基金Supported by the National Natural Science Foundation of China(11071152)the Natural Science Foundation of Guangdong Province(S2015A030313443)
文摘Fusion-Riesz frame (Riesz frame of subspace) whose all subsets are fusion frame sequences with the same bounds is a special fusion frame. It is also considered a generalization of Riesz frame since it shares some important properties of Riesz frame. In this paper, we show a part of these properties of fusion-Riesz frame and the new results about the stabilities of fusion-Riesz frames under operator perturbation (simple named operator perturbation of fusion-Riesz frames). Moreover, we also compare the operator perturbation of fusion-Riesz frame with that of fusion frame, fusion-Riesz basis (also called Riesz decomposition or Riesz fusion basis) and exact fusion frame.
文摘A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, thereby constructing a frame for the whole space by joining sequences of frames for subspaces. Moreover the notion of fusion frames provide a framework for applications and providing efficient and robust information processing algorithms.In this paper we study the conditions under which removing an element from a fusion frame, again we obtain another fusion frame. We give another proof of [5, Corollary 3.3(iii)] with extra information about the bounds.