This article aims to enhance seismic hazard assessment methods for Kazakhstan’s seismotectonic conditions.It combines probabilistic seismic hazard analysis(PSHA),ground motion simulation,sitespecific geological and g...This article aims to enhance seismic hazard assessment methods for Kazakhstan’s seismotectonic conditions.It combines probabilistic seismic hazard analysis(PSHA),ground motion simulation,sitespecific geological and geotechnical data analysis,and seismic scenario analysis to develop Probabilistic General Seismic Zoning(GSZ)maps for Kazakhstan and Probabilistic Seismic Microzoning maps for Almaty.These maps align with Eurocode 8 principles,incorporating seismic intensity and engineering parameters like peak ground acceleration(PGA).The new procedure,applied in national projects,has resulted in GSZ maps for the country,seismic microzoning maps for Almaty,and detailed seismic zoning maps for East Kazakhstan.These maps,part of a regulatory document,guide earthquake-resistant design and construction.They offer a comprehensive assessment of seismic hazards,integrating traditional Medvedev-Sponheuer-Karnik(MSK-64)intensity scale points with quantitative parameters like peak ground acceleration.This innovative approach promises to advance methods for quantifying seismic hazards in specific regions.展开更多
A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based ...A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.展开更多
This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t...This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.展开更多
Recent earthquakes have revealed that conventional seismic design philosophy allows for large levels of nonstructural damage. Nonstructural earthquake damage results in extensive repair costs and lengthy functional di...Recent earthquakes have revealed that conventional seismic design philosophy allows for large levels of nonstructural damage. Nonstructural earthquake damage results in extensive repair costs and lengthy functional disruptions, as nonstructural systems comprise the majority of building investment and are essential to building operations. A better understanding of the expected overall seismic performance of code-compliant buildings is needed. This study investigates the seismic performance of a conventional building. A 16-storey steel office building was designed using a modern seismic structural code(Eurocode 8). This study is the first to assess in detail the substantial earthquake repair costs expected in a modern Eurocode concentric braced frame structure, considering nonstructural systems with the FEMA P-58 procedure. The breakdown of total repair costs by engineering demand parameter and by fragility group is novel. The seismic performance assessment indicated that substantial earthquake repair costs are expected. Limitations of the Eurocode nonstructural damage methodology were revealed in a novel manner using FEMA P-58, as the prescribed drift limits did not minimize nonstructural repair costs. These findings demonstrate the need for design procedures that improve nonstructural seismic performance. The study results provide a benchmark on which to evaluate retrofit alternatives for existing buildings and design options for new structures.展开更多
基金The work was carried out in the framework of earmarked funding“Assessment of seismic hazard of territories of Kazakhstan on modern scientific and methodological basis”,programme code number F.0980.Source of funding-Ministry of Science and Higher Education of the Republic of Kazakhstan.
文摘This article aims to enhance seismic hazard assessment methods for Kazakhstan’s seismotectonic conditions.It combines probabilistic seismic hazard analysis(PSHA),ground motion simulation,sitespecific geological and geotechnical data analysis,and seismic scenario analysis to develop Probabilistic General Seismic Zoning(GSZ)maps for Kazakhstan and Probabilistic Seismic Microzoning maps for Almaty.These maps align with Eurocode 8 principles,incorporating seismic intensity and engineering parameters like peak ground acceleration(PGA).The new procedure,applied in national projects,has resulted in GSZ maps for the country,seismic microzoning maps for Almaty,and detailed seismic zoning maps for East Kazakhstan.These maps,part of a regulatory document,guide earthquake-resistant design and construction.They offer a comprehensive assessment of seismic hazards,integrating traditional Medvedev-Sponheuer-Karnik(MSK-64)intensity scale points with quantitative parameters like peak ground acceleration.This innovative approach promises to advance methods for quantifying seismic hazards in specific regions.
文摘A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.
文摘This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.
文摘Recent earthquakes have revealed that conventional seismic design philosophy allows for large levels of nonstructural damage. Nonstructural earthquake damage results in extensive repair costs and lengthy functional disruptions, as nonstructural systems comprise the majority of building investment and are essential to building operations. A better understanding of the expected overall seismic performance of code-compliant buildings is needed. This study investigates the seismic performance of a conventional building. A 16-storey steel office building was designed using a modern seismic structural code(Eurocode 8). This study is the first to assess in detail the substantial earthquake repair costs expected in a modern Eurocode concentric braced frame structure, considering nonstructural systems with the FEMA P-58 procedure. The breakdown of total repair costs by engineering demand parameter and by fragility group is novel. The seismic performance assessment indicated that substantial earthquake repair costs are expected. Limitations of the Eurocode nonstructural damage methodology were revealed in a novel manner using FEMA P-58, as the prescribed drift limits did not minimize nonstructural repair costs. These findings demonstrate the need for design procedures that improve nonstructural seismic performance. The study results provide a benchmark on which to evaluate retrofit alternatives for existing buildings and design options for new structures.