Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th...In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.展开更多
A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vert...A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vertex.This concept was introduced by Tutte as an extension of face colorings,and Tutte in 1954 conjectured that every bridgeless graph admits a nowhere-zero 5-flow,known as the 5-Flow Conjecture.This conjecture is verified for some graph classes and remains unresolved as of today.In this paper,we show that every bridgeless graph of Euler genus at most 20 admits a nowhere-zero 5-flow,which improves several known results.展开更多
Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enh...Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.展开更多
In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and un...In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.展开更多
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage...Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.展开更多
This letter presents a method for probing the attosecond time delay between two radiatively resonant transitions from Fano structures,which arise from interference between the extreme ultraviolet free induction decay(...This letter presents a method for probing the attosecond time delay between two radiatively resonant transitions from Fano structures,which arise from interference between the extreme ultraviolet free induction decay(XFID)emission and high-order harmonics.The ellipticity dependence of the Ne^(+)XFID yield confirms that the ionic excited-state populations originate from inelastic recollision between tunneling electrons and parent ions.Subsequent extraction of relative phases from Fano structures enables the determination of the time delay(~22 as)between the two decay pathways.This work provides an experimental approach to probe the attosecond time delay between different XFID channels and contributes to a deeper understanding of the tunneling-plusrescattering model in strong laser fields.展开更多
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-ly...We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-lying excited states to the 1s-muon state can lead to the production of electron-positron pairs.We show that the Breit interaction determines the transition probabilities for states with nonzero orbital momentum.We show that the pair production arises mainly from the decay of the 2p states.Thus,the Breit interaction governs electron-positron pair production in bound-bound muon transitions.This process offers a unique opportunity to explore quantum electrodynamics in strong fields,as well as a class of nonradiative transitions involving electron-positron pair production.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
This study mainly focuses on the triangle bounded L⁃algebras and triangle ideals.Firstly,the definition of triangle bounded L⁃algebras is presented,and several examples with different conditions are outlined along wit...This study mainly focuses on the triangle bounded L⁃algebras and triangle ideals.Firstly,the definition of triangle bounded L⁃algebras is presented,and several examples with different conditions are outlined along with an exploration of their properties.Moreover,we investigate the structure of triangle bounded L⁃algebra with a special condition.Secondly,we define the concept of triangle ideals of triangle bounded L⁃algebra and explore the connection between the triangle ideals of triangle bounded L⁃algebra L and the ideals of bounded L⁃algebra E(L).In addition,we classified and studied various classes of triangle ideals,including Stonean triangle ideals,extended Stonean triangle ideals,and lattice ideals,and by introducing the notion of Stonean triangle bounded L algebras,we examine the relationship between Stonean triangle bounded L⁃algebras and Stonean triangle ideals.Finally,we investigate the interrelationships among these various types of triangle ideals.展开更多
We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrief...We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrieffer-Heeger chains.The formation of topological Floquet BICs can be adjusted only by tuning the driving amplitude or frequency,regardless of whether the static system has BICs or not.The interchain bias can only change the localization property of topological Floquet BICs,and a bigger bias can lead to transforming topological Floquet BICs into bound states out of the continuum(BOCs).But it does not change the topological properties of these topological Floquet states.Based on the repulsion effect of edge states,we propose to detect occurrence of topological Floquet BICs and transition point between topological Floquet BICs and BOCs using quantum walk.Our work provided a convenient and realistic approach for the experimental realization and manipulation of BICs in a single-particle quantum system.展开更多
Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as...Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.展开更多
The fragility and stochastic behavior of quantum sources make it crucial to witness the topology of quantum networks.Most previous theoretical methods are based on perfect assumptions of quantum measurements.In this w...The fragility and stochastic behavior of quantum sources make it crucial to witness the topology of quantum networks.Most previous theoretical methods are based on perfect assumptions of quantum measurements.In this work,we propose a method to witness network topology under imperfect assumptions of quantum measurements.We show that the discrimination between star and triangle networks depends on the specific error tolerances of local measurements.This extends recent results for witnessing the triangle network[Phys.Rev.Lett.132240801(2024)].展开更多
The tiered geosynthetic-reinforced soil (GRS) walls have been increasingly applied in the high and steep retaining soil structures. However, very little is known about the design method for the tiered GRS wall in prac...The tiered geosynthetic-reinforced soil (GRS) walls have been increasingly applied in the high and steep retaining soil structures. However, very little is known about the design method for the tiered GRS wall in practice. This study is aimed at proposing an upper-bound stability analysis method of a tiered GRS wall. The proposed method was firstly validated by the existing results from the centrifuge test and the numerical method, and then a parametric study was performed to investigate the effects of the cohesionless backfill friction angle φ1 and the wall geometric parameters including the offset distance, the total wall height, the batter angle δ, the number of tiers n, and wall height ratio of adjacent tiers on the dimensionless equivalent earth pressure coefficient KT. The analysis results demonstrated that as the φ1 increases, the shear strength of backfill is enhanced and thus the KT or the total reinforcement tensile force decreases, and the KT decreases with the increase of the offset distance at the initial stage and then becomes stable when it reaches a certain critical value. For a fixed offset distance, the KT or the total reinforcement tensile force decreases with the increase of the δ. For the two-tiered GRS walls having the offset distance less than the critical value, the wall with the smaller wall height ratio has a larger KT. Further, the variation of the location of the critical failure surfaces of tiered GRS walls was presented in this study with the variation of the φ1 and the wall geometry.展开更多
Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and pote...Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and potentially prevent the testing from proceeding normally.Position errors include the decenter error,tilt error,and distance error.During the testing process,position errors will impact the testing accuracy and the crosstalk fringes generated by stray light.To determine the specific impact of position errors,we use the concept of Hindle shell testing of a convex aspheric mirror,and propose the simulation method of crosstalk fringes in null compensation interferometry.We also propose evaluation indices of crosstalk fringes in interferometry and simulate the influence of position errors on the crosstalk fringes.This work aims to help improve the design of compensation interferometry schemes,enhance the feasibility of the design,reduce engineering risks,and improve efficiency.展开更多
Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols...Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols.In this study,in vitro simulated gastrointestinal digestion and colonic fermentation models were used to study the release profile and metabolism of BPs of oat bran.Significantly higher level of BPs was released during in vitro colon fermentation(3.05 mg GAE/g)than in gastrointestinal digestion(0.54 mg GAE/g).Five polyphenols were detected via LC-MS and their possible conversion pathways were speculated.Released BPs exhibited chemical antioxidant capacity.16S rRNA sequencing further revealed that Clostridium butyricum,Enterococcus faecalis,Bacteroides acidifaciens were the key bacteria involved in the release of BPs,and this was verified by whole-cell transformation.Our results helped to explain the possible mechanism of the health benefits of BPs in whole grains.展开更多
Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in cu...Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.展开更多
This study aimed to identify and compensate for the geometric errors of the double swiveling axes in a five-axis computer numerical control(CNC)machining center.Hence,a three-dimensional coordinate calculation algorit...This study aimed to identify and compensate for the geometric errors of the double swiveling axes in a five-axis computer numerical control(CNC)machining center.Hence,a three-dimensional coordinate calculation algorithm for a measured point with additional rotational rigid body motion constraints is proposed.The motion constraints of the rotational rigid body were analyzed,and a mathematical model of the measured point algorithm in the swiveling axes was established.The Levenberg-Marquard method was used to solve the nonlinear superstatically determined equations.The spatial coordinate error was used to separate the spatial deviation of the measured point.An identification model of the position-independent and position-dependent geometric errors was established.The three-dimensional coordinate-solving algorithm of the measured point in the swiveling axis and geometric error identification method based on the Monte Carlo method were analyzed numerically.Geometric error measurement and cutting experiments were performed on a VMC25100U five-axis machining center,which integrated two swiveling axes.Geometric errors of the A-and B-axes were identified and measured experimentally.The angular positioning errors before and after compensation were measured using a laser interferometer,which verified the effectiveness of the proposed algorithm.A cutting experiment of a round table part was performed.The shape and position accuracy of the processed part before and after compensation were detected using a coordinate measuring machine.It verified that the geometric error of the swiveling axis was effectively compensated by the algorithm proposed herein.展开更多
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金Supported by the National Natural Science Foundation of China(61971401)。
文摘In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.
文摘A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vertex.This concept was introduced by Tutte as an extension of face colorings,and Tutte in 1954 conjectured that every bridgeless graph admits a nowhere-zero 5-flow,known as the 5-Flow Conjecture.This conjecture is verified for some graph classes and remains unresolved as of today.In this paper,we show that every bridgeless graph of Euler genus at most 20 admits a nowhere-zero 5-flow,which improves several known results.
文摘Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing.
基金Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.
文摘Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.
基金supported by the National Natural Science Foundation of China(Grant Nos.12234020,12474281,12450403,and 12274461)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1193).
文摘This letter presents a method for probing the attosecond time delay between two radiatively resonant transitions from Fano structures,which arise from interference between the extreme ultraviolet free induction decay(XFID)emission and high-order harmonics.The ellipticity dependence of the Ne^(+)XFID yield confirms that the ionic excited-state populations originate from inelastic recollision between tunneling electrons and parent ions.Subsequent extraction of relative phases from Fano structures enables the determination of the time delay(~22 as)between the two decay pathways.This work provides an experimental approach to probe the attosecond time delay between different XFID channels and contributes to a deeper understanding of the tunneling-plusrescattering model in strong laser fields.
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602501)the National Natural Science Foundation of China(Grant No.12011530060)+1 种基金supported solely by the Russian Science Foundation(Grant No.22-12-00043)supported by the Chinese Academy of Sciences(CAS)Presidents International Fellowship Initiative(PIFI)(Grant Nos.2018VMB0016 and 2022VMC0002),respectively。
文摘We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-lying excited states to the 1s-muon state can lead to the production of electron-positron pairs.We show that the Breit interaction determines the transition probabilities for states with nonzero orbital momentum.We show that the pair production arises mainly from the decay of the 2p states.Thus,the Breit interaction governs electron-positron pair production in bound-bound muon transitions.This process offers a unique opportunity to explore quantum electrodynamics in strong fields,as well as a class of nonradiative transitions involving electron-positron pair production.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金Sponsored by Foreign Expert Program of China(Grant No.DL2023041002L)Yulin City Industry University Research Project(Grant No.CXY-2022-59).
文摘This study mainly focuses on the triangle bounded L⁃algebras and triangle ideals.Firstly,the definition of triangle bounded L⁃algebras is presented,and several examples with different conditions are outlined along with an exploration of their properties.Moreover,we investigate the structure of triangle bounded L⁃algebra with a special condition.Secondly,we define the concept of triangle ideals of triangle bounded L⁃algebra and explore the connection between the triangle ideals of triangle bounded L⁃algebra L and the ideals of bounded L⁃algebra E(L).In addition,we classified and studied various classes of triangle ideals,including Stonean triangle ideals,extended Stonean triangle ideals,and lattice ideals,and by introducing the notion of Stonean triangle bounded L algebras,we examine the relationship between Stonean triangle bounded L⁃algebras and Stonean triangle ideals.Finally,we investigate the interrelationships among these various types of triangle ideals.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175315 and 12205385)。
文摘We propose a novel approach to generate and manipulate topological Floquet bound states in the continuum(BICs)via a class of systems constructed by coupling two identical periodically driven one-dimensional Su-Schrieffer-Heeger chains.The formation of topological Floquet BICs can be adjusted only by tuning the driving amplitude or frequency,regardless of whether the static system has BICs or not.The interchain bias can only change the localization property of topological Floquet BICs,and a bigger bias can lead to transforming topological Floquet BICs into bound states out of the continuum(BOCs).But it does not change the topological properties of these topological Floquet states.Based on the repulsion effect of edge states,we propose to detect occurrence of topological Floquet BICs and transition point between topological Floquet BICs and BOCs using quantum walk.Our work provided a convenient and realistic approach for the experimental realization and manipulation of BICs in a single-particle quantum system.
基金supported by the National Natural Science Foundation of China (62071144)
文摘Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12271394 and 62172341)the Sichuan Natural Science Foundation(Grant Nos.2024NSFSC1365 and 2024NSFSC1375)。
文摘The fragility and stochastic behavior of quantum sources make it crucial to witness the topology of quantum networks.Most previous theoretical methods are based on perfect assumptions of quantum measurements.In this work,we propose a method to witness network topology under imperfect assumptions of quantum measurements.We show that the discrimination between star and triangle networks depends on the specific error tolerances of local measurements.This extends recent results for witnessing the triangle network[Phys.Rev.Lett.132240801(2024)].
基金financially supported by the National Natural Science Foundation of China(Grants Nos.41877255,and 52078182).
文摘The tiered geosynthetic-reinforced soil (GRS) walls have been increasingly applied in the high and steep retaining soil structures. However, very little is known about the design method for the tiered GRS wall in practice. This study is aimed at proposing an upper-bound stability analysis method of a tiered GRS wall. The proposed method was firstly validated by the existing results from the centrifuge test and the numerical method, and then a parametric study was performed to investigate the effects of the cohesionless backfill friction angle φ1 and the wall geometric parameters including the offset distance, the total wall height, the batter angle δ, the number of tiers n, and wall height ratio of adjacent tiers on the dimensionless equivalent earth pressure coefficient KT. The analysis results demonstrated that as the φ1 increases, the shear strength of backfill is enhanced and thus the KT or the total reinforcement tensile force decreases, and the KT decreases with the increase of the offset distance at the initial stage and then becomes stable when it reaches a certain critical value. For a fixed offset distance, the KT or the total reinforcement tensile force decreases with the increase of the δ. For the two-tiered GRS walls having the offset distance less than the critical value, the wall with the smaller wall height ratio has a larger KT. Further, the variation of the location of the critical failure surfaces of tiered GRS walls was presented in this study with the variation of the φ1 and the wall geometry.
基金the National Key Research and Development Program of China(2022YFB3403404)the Youth Innovation Promotion Association,CAS(2022213)the National Natural Science Foundation of China(62127901 and 62305334).
文摘Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and potentially prevent the testing from proceeding normally.Position errors include the decenter error,tilt error,and distance error.During the testing process,position errors will impact the testing accuracy and the crosstalk fringes generated by stray light.To determine the specific impact of position errors,we use the concept of Hindle shell testing of a convex aspheric mirror,and propose the simulation method of crosstalk fringes in null compensation interferometry.We also propose evaluation indices of crosstalk fringes in interferometry and simulate the influence of position errors on the crosstalk fringes.This work aims to help improve the design of compensation interferometry schemes,enhance the feasibility of the design,reduce engineering risks,and improve efficiency.
基金the support from the research grants by National Natural Science Foundation of China(32202051)National Key R&D Program of China(2022YFF1100104)the Major Project of Inner Mongolia Science and Technology Department,China(2021ZD0002)。
文摘Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols.In this study,in vitro simulated gastrointestinal digestion and colonic fermentation models were used to study the release profile and metabolism of BPs of oat bran.Significantly higher level of BPs was released during in vitro colon fermentation(3.05 mg GAE/g)than in gastrointestinal digestion(0.54 mg GAE/g).Five polyphenols were detected via LC-MS and their possible conversion pathways were speculated.Released BPs exhibited chemical antioxidant capacity.16S rRNA sequencing further revealed that Clostridium butyricum,Enterococcus faecalis,Bacteroides acidifaciens were the key bacteria involved in the release of BPs,and this was verified by whole-cell transformation.Our results helped to explain the possible mechanism of the health benefits of BPs in whole grains.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key R&D Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.
基金Supported by Shanxi Provincial Natural Science Foundation(Grant No.2021JM010)The Youth Innovation Team of Shaanxi Universities.
文摘This study aimed to identify and compensate for the geometric errors of the double swiveling axes in a five-axis computer numerical control(CNC)machining center.Hence,a three-dimensional coordinate calculation algorithm for a measured point with additional rotational rigid body motion constraints is proposed.The motion constraints of the rotational rigid body were analyzed,and a mathematical model of the measured point algorithm in the swiveling axes was established.The Levenberg-Marquard method was used to solve the nonlinear superstatically determined equations.The spatial coordinate error was used to separate the spatial deviation of the measured point.An identification model of the position-independent and position-dependent geometric errors was established.The three-dimensional coordinate-solving algorithm of the measured point in the swiveling axis and geometric error identification method based on the Monte Carlo method were analyzed numerically.Geometric error measurement and cutting experiments were performed on a VMC25100U five-axis machining center,which integrated two swiveling axes.Geometric errors of the A-and B-axes were identified and measured experimentally.The angular positioning errors before and after compensation were measured using a laser interferometer,which verified the effectiveness of the proposed algorithm.A cutting experiment of a round table part was performed.The shape and position accuracy of the processed part before and after compensation were detected using a coordinate measuring machine.It verified that the geometric error of the swiveling axis was effectively compensated by the algorithm proposed herein.