[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel....[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel. [Method] Photo-conversion film and Iongevous anti-dropping film were compared in terms of light, air and soil temperature utilizing the Facilities of leafy agriculture high tunnel intelligent monitoring system. Verifying the results by farmland experiment. [Result] Photo- conversion film indeed improved the light quality of high tunnel compared with the Iongevous anti- dripping film. The air and soil temperature was raised several degrees. Results of farmland experiment show that the average value of brassica chinensis fresh weight increased 19.15% compared to the control. [Conclusion] Photo-conversion film promotes more crop growth than Iongevous anti-dropping film due to improvement of light quality, air and soil temperature.展开更多
Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters ...Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters at the breast height(DBH) A. georgei var. smithii samples were monitored continuously with the thermal dissipation probe for the entire growing period in order to understand the water transportation mechanism and the effects of environmental factors on its transpiration and growth. Relative environment factors, temperature and humidity of air, photosynthetically active radiation, rainfall, and wind speed, soil moisture, etc. were measured by the automatic weather stations. Diurnal and seasonal variations in sap flow rate with the different stem diameters and their correlations with meteorological factors were analyzed. The diurnal change in sap flow velocity showed a single-peak curve at the daily time scale, whereas a lower sap flow velocity can be observed in the largest DBH sample tree at night. The maximum average velocity was observed in August, whereas the minimum velocity was observed in January, and a large amount of water evaporated in summer owing to the higher sap flow velocity. In addition, sap flow velocity was closely related to changes in the micrometeorological factors, with average sap flow velocity showing significant linear correlations with air temperature, photosynthetically active radiation, rainfall, and vapor pressure deficit of air and soil moisture. Therefore, some measures, improving the light and temperature conditions, should be taken for protecting A. georgei var. smithii population in the Tibetan Plateau.展开更多
Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 ...Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1. The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCl and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCl, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NaCl solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCl solution indicate that external ions may also regulate sperm motility.展开更多
From April to December 2018, zooplankton and water quality were monitored in the Daning water storage reservoir of the South-to-North Water Transfer Project. The dominance of plankton was calculated and dominant speci...From April to December 2018, zooplankton and water quality were monitored in the Daning water storage reservoir of the South-to-North Water Transfer Project. The dominance of plankton was calculated and dominant species of plankton were analyzed. The relationship between dominant species and water environment factors was discussed by canonical correspondence analysis. The results showed that the Daning Water Storage Reservoir identified 12 species of dominant species of phytoplankton in 5 phyla, most of which were common species of freshwater phytoplankton, and there were also eutrophication indicator species, and 10 species of dominant species (genus) of metazoan zooplankton were identified. Four water environment factors affecting dominant species of phytoplankton were screened out, which are chloride, total nitrogen, total phosphorus and nitrate nitrogen respectively. The five water environment factors that affect the dominant species of zooplankton are sulfate, chloride, nitrate nitrogen, water temperature and pH respectively. The temporal distribution of dominant species of plankton in the reservoir is quite different. Diatom and Xanthomonas are mainly affected by the concentration of nitrate in water, while Chlorophyta is mainly affected by chloride and total phosphorus except Scenedesmus obliquus, and Cyanophyta is affected by these four water environment factors. The pH values of Brachionus puledalis, Brachionus angularis, Brachionus plicatilis and Arthropoda are significantly affected by the pH values, while nitrate nitrogen and sulfate are simultaneously affected. Water temperature affects Daphnia magna, Brachionus polycephalus and Brachionus breviscapus, while other metazooplankton are not significantly affected by sulfate, nitrate nitrogen, chloride, water temperature and pH values.展开更多
AIM: To evaluate the association and interaction of genetic polymorphisms in methylenetetrahydrofolate reductase (MTHER) and cytochrome P4502E1 (CY- P4502E1), environment risk factors with esophageal cancer (EC...AIM: To evaluate the association and interaction of genetic polymorphisms in methylenetetrahydrofolate reductase (MTHER) and cytochrome P4502E1 (CY- P4502E1), environment risk factors with esophageal cancer (EC) in Kazakh, a high EC incidence area of Xinjiang Uygur Autonomous Region, China. METHODS: A 1:2 matched case-control study was conducted with 120 cases of EC and 240 populationor hospital-based controls. The controls were matched for sex, nationality, area of residence and age within a 5-year difference. MTHER and CYP4502E1 genotypes were identified by PCR-based restriction fragment length polymorphism (RFLP). A conditional logistic regression model was established to identify risk factors. The strata method was adopted in interaction analysis. RESULTS: Low consumption of green vegetables and fresh fruits, alcohol drinking, and unsafe water (shallow well, or river) were found to be the risk factors for EC. Individuals with the MTHFR677 (C/T + T/T) genotype had a 2.62-fold (95% CI: 1.61-4.28) risk of developing EC compared with those who carried the C/C genotype. Individuals with the CYP4502EIC1/C1 genotype had a 3.00-fold (95% CI: 1.82-4.96) risk compared with those who carried the CYP4502E1 (C1/C2 + C2/C2) genotype. Gene-environment interaction analysis showed that MTHFR677 gene polymorphism was correlated with consumption of green vegetables and fresh fruit, while CYP4502E1 C1/C1 was correlated with alcohol drinking and unsafe drinking water. MTHFR and CYP4502E1 analysis of gene-gene interaction showed that individuals with the MTHFR677 (C/T + T/T) and CYP4502EIC1/ C1 genotypes had a 7.41-fold (95% CI: 3.60-15.25) risk of developing EC compared with those who carried the MTHFR677C/C and CYP4502E1 RsaI C1/C2 + C2/C2 genes, and the interaction rate was higher than that of the two factors alone. CONCLUSION: Low consumption of green vegetables and fresh fruits, alcohol drinking, and unsafe water (shallow well, or river) and polymorphisms in MTHFR and CYP4502E1 genes are important risk factors for EC. There is a synergistic interaction among polymorphisms in MTHFR and CYP4502E1 genes and environment factors. MTHFR and CYP4502E1 genes can be used as biomarkers for prevention of EC in Kazakh, Xinjiang Uygur Autonomous Region, China.展开更多
[Objective] The aim was to analyze the relationship between population distribution and environment factors in mountain area quantitatively.[Method] Taking the contiguous area of Sichuan,Yunnan and Guizhou Province as...[Objective] The aim was to analyze the relationship between population distribution and environment factors in mountain area quantitatively.[Method] Taking the contiguous area of Sichuan,Yunnan and Guizhou Province as study object,population density and residential point density were chosen as the indices of population distribution,and the quantitative relationship between population distribution and environment factors (including altitude,topography relief amplitude,land use,road network and river network) in mountain area was analyzed.[Result] Altitude and topography relief amplitude in mountain area had obvious negative correlation with population density and residential point density,and the correlation coefficients with population density were-0.731 and-0.743.In addition,residential points were fewer in the region far from rivers,but there was no obvious correlation between population density and river network density.Residential point density was higher in cultivated land and construction land,and population density had obvious positive correlation with the area proportions of cultivated land and construction land,with the correlation coefficients of 0.895 and 0.726,respectively.Besides,the more distant from road,the smaller residential point density,and there was obvious positive correlation between population density and road network density,with the correlation coefficient of 0.823.[Conclusion] The study could lay a foundation for the further development of spatiality of population data in study region.展开更多
Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and th...Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and their influencing factors in hot springs remain largely unclear.Therefore,this study investigated the microbial functional genes and their potential for controlling biogeochemical cycles(C,N,S,and P) in the hot Springs of Tengchong,China,using the Geochip method,a functional gene microarray technology.The examined hot springs have very different microbial functional genes.A total of 22 736 gene probe signals were identified,belonging to 567 functional genes and associated with 15 ecological functions,mainly involving stress response,carbon cycle,nitrogen cycle,sulfur cycle,phosphorus cycle and energy processes.The amyA,narG,dsrA and ppx genes were most abundant in carbon,nitrogen,sulfur and phosphorus cycles,respectively,and were significantly correlated with pH,temperature and SO_(4)^(2-).The diversity and abundance of detected gene probes were negatively correlated with temperature.The α-diversity(i.e.,Shannon index) was high at low temperature and low pH.Molecular functional interactions revealed by the gene connectivity levels were negatively correlated with temperature,pH and SO_(4)^(2-).These results suggested that the abundance,diversity and interactions of microbial functional genes were significantly influenced by geochemical parameters.-In addition,some genera possessed functional genes related to carbon,nitrogen,sulfur,and phosphorus cycles and can synergistically control the biogeochemical cycles of carbon,nitrogen,sulfur and phosphorus.These findings provide new insights into the functional potentials of microorganisms to participate in biogeochemical cycles and their responses to environmental factors in hot springs.展开更多
The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distributio...The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distribution patterns and dynamics for botanists,ecologists,conservation biologists,and biogeographers.This study proposes a gridded vector data integration method,combining grid-based techniques with vectorization to integrate diverse data types from multiple sources into grids of the same scale.Here we demonstrate the methodology by creating a comprehensive 1°×1°database of western China that includes plant distribution information and environmental factor data.This approach addresses the need for a standardized data system to facilitate exploration of plant distribution patterns and dynamic changes in the region.展开更多
As a major global public health issue,tuberculosis is closely related to multiple socio-ecological factors in its epidemiological patterns~([1]).China,as a high-burden country for tuberculosis,exhibits regional variat...As a major global public health issue,tuberculosis is closely related to multiple socio-ecological factors in its epidemiological patterns~([1]).China,as a high-burden country for tuberculosis,exhibits regional variations in the distribution of the tuberculosis epidemic.To enhance the efficiency of prevention and control,its strategies are undergoing a transition toward regionally differentiated approaches~([2]).展开更多
Macrobenthic organisms are commonly employed as biomonitors for environmental risk assessment.In this study,we aimed to investigate the spatial and temporal patterns of the macrobenthic community,which is influenced b...Macrobenthic organisms are commonly employed as biomonitors for environmental risk assessment.In this study,we aimed to investigate the spatial and temporal patterns of the macrobenthic community,which is influenced by environmental factors of sediments and bottom water layer.We sampled a total of 12,11,10,and 11 stations in the Shengsi Archipelago during June 2010,August 2010,November 2020,and April 2021 respectively.A total of 124 species of macrobenthos were identified,with polychaetes being the dominant group.The abundance,biomass,and diversity indices exhibited no significant temporal differences.Similarly,biodiversity did not exhibit a clear spatial gradient,likely due to the small study area and the absence of significant differences in key factors such as depth.However,the stations with the lowest biodiversity values consistently appeared in the southwest region,possibly due to the impact of human activities.Significant differences in the macrobenthic community were observed between all months except between June and August,and mollusk Endopleura lubrica and polychaete Sigambra hanaokai were important contributors to these differences according to the results of the Similarity Percentages analysis.Suspended particulate matter(SPM)was identified as the primary driving factors of macrobenthic variability.In summary,the community structure underwent temporal changes influenced by complex current patterns,while biodiversity remained relatively stable.This study contributes to our understanding of the key environmental factors affecting macrobenthic communities and biodiversity.It also provides valuable data support for the long-term monitoring of macrobenthos and the environment in the Shengsi Archipelago.展开更多
Connection methods are essential for integrating environmental factors with machine learning models for landslide susceptibility assessments.However,current research does not consider the different characteristics of ...Connection methods are essential for integrating environmental factors with machine learning models for landslide susceptibility assessments.However,current research does not consider the different characteristics of continuity and discreteness within environmental factors and therefore does not analyze the suitability of various connection methods for different factor types.Moreover,the applicability of connection methods remains unclear when slope units are used as the basic assessment units.This study employed slope units as mapping units.The original data of 15 environmental factors,including 12 continuous and three discrete factors,and two connection methods,i.e.,frequency ratio(FR)and modified FR(MFR),were separately used to construct the input datasets for landslide susceptibility modeling.The performance of four widely used machine learning models,random forest(RF),support vector machine(SVM),logistic regression(LR),and multilayer perceptron(MLP),was analyzed to evaluate the suitability of the connection methods for landslide susceptibility mapping.The results show that,in contrast to the decision tree-based RF model,the use of different connection methods for different factor types significantly influences the results of nontree models,including SVM,MLP,and LR.SVM model is the most sensitive to factor types and connection methods.When the MFR is used as the connection method,it improves the mapping results,especially for the SVM model.This shows that it is essential to consider the different characteristics of the data and select an appropriate environmental factor connection strategy to increase the effectiveness of landslide susceptibility evaluation.Furthermore,this study explored the role of connective methods from a sample distribution perspective,providing a theoretical foundation for the more rational and effective integration of environmental factors.展开更多
Amid the global shift toward climate governance and low-carbon transformation,accurately quantifying environmental risk factors within green bond pricing mechanisms has emerged as a critical issue.Drawing on data from...Amid the global shift toward climate governance and low-carbon transformation,accurately quantifying environmental risk factors within green bond pricing mechanisms has emerged as a critical issue.Drawing on data from China’s green bond market between 2018 and 2023,this study develops a multifactor pricing model that integrates environmental risk premiums.Through regression analysis,it empirically investigates the effects of environmental reputation,transparency of information disclosure,and third-party certification on bond risk premiums.The results indicate that green-labeled bonds carry,on average,a 42.6 basis point lower risk premium compared to non-green bonds,while third-party certification further reduces this premium by an additional 54.1 basis points.Moreover,a one standard deviation improvement in the quality of environmental information disclosure leads to a reduction in bond financing costs by approximately 18 to 25 basis points.Issuers operating in high-energy-consuming industries bear significantly higher environmental risk premiums relative to those in low-energy-consuming sectors.By integrating an ESG scoring framework into bond pricing,this study reveals the transmission channels of environmental risks into market pricing and provides a theoretical foundation for enhancing pricing benchmarks in the green bond market.展开更多
Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental ...Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.展开更多
To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environm...To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater.展开更多
The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Ther...The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.展开更多
Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temper...Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.展开更多
During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,...During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclusions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics.展开更多
Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root tr...Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.展开更多
Bispecific antibodies(bsAbs)hold promises for enhanced therapeutic potential surpassing that of their parental monoclonal antibodies.However,bsAbs pose great challenges in their manufacturing,and one of the common rea...Bispecific antibodies(bsAbs)hold promises for enhanced therapeutic potential surpassing that of their parental monoclonal antibodies.However,bsAbs pose great challenges in their manufacturing,and one of the common reasons is their susceptibility to aggregation.Building on previous studies demonstrating the functionality and potential manufacturability of Fab-scFv format bsAb,this investigation delved into the impact of environmental factors-such as pH,buffer types,ionic strength,protein concentrations,and temperatures-on its stability and the reversal of its self-associated aggregates.Mildly acidic,low-salt conditions were found optimal,ensuring bsAb stability for 30 days even at elevated temperature of 40°C.Furthermore,these conditions facilitated the reversal of its self-associated aggregates to monomers during the initial 7-day incubation period.Our findings underscore the robustness and resilience of Fab-scFv format bsAb,further confirming its potential manufacturability despite its current absence as commercial products.展开更多
Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes fa...Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes factors that contribute to crash occurrence based on two national datasets in the United States (CISS and NASS-CDS) for the years 2017-2022 and 2010-2015, respectively. Three taxonomies were applied to enhance understanding of the various crash contributing factors. These taxonomies were developed based on previous research and practice and involved different groupings of human factors, vehicle factors, and roadway and environmental factors. Statistics for grouping the different types of factors and statistics for specific factors are provided. The results indicate that human factors are present in over 95% of crashes, roadway and environmental factors are present in over 45% of crashes, and vehicle factors are present in less than 2% of crashes. Regarding factors related to human error and vehicle maintenance, speeding is involved in over 25% of crashes, distraction is involved in over 20% of crashes, alcohol and drugs are involved in over 9% of crashes, and vehicle maintenance is involved in approximately 0.45% of crashes. Approximately 4.4% of crashes involve a driver who “looked but did not see.” Weather is involved in over 13% of crashes. Conclusions: The findings indicate that, consistent with previous research, human factors or human error are present in around 95% of crashes. Infrastructure and environmental factors contribute to about 45% of crashes. Vehicle factors contribute to only 1.67% - 1.71% of crashes. The results from this study could potentially be used to inform future safety management and improvement activities, including policy-making, regulation development, safe systems and systemic safety approaches to safety management, and other engineering, education, emergency response, enforcement, evaluation, and encouragement activities. The findings could also be used in the development of future Driver Assistance Technologies (DAT) systems and in enhancing existing technologies.展开更多
基金Supported by Jiangsu Agricultural Science and Technology Self-Innovation Funds(CX(13)3032)Nanjing Leading Science and Technology Innovative Talents and Entrepreneurs(2012-NJ-321)+4 种基金Jiangsu"Six Businesses Talents Peak"Program(2012NY-031)Nanjing Innovation Fund for Technology Based Firms(2013/074)New & High Technology Industry Development Project of Institutions of Higher Education in Jiangsu Province(JHB05-21)Technology Supporting Program of Jiangsu Province-Agriculture(SBE2014327)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel. [Method] Photo-conversion film and Iongevous anti-dropping film were compared in terms of light, air and soil temperature utilizing the Facilities of leafy agriculture high tunnel intelligent monitoring system. Verifying the results by farmland experiment. [Result] Photo- conversion film indeed improved the light quality of high tunnel compared with the Iongevous anti- dripping film. The air and soil temperature was raised several degrees. Results of farmland experiment show that the average value of brassica chinensis fresh weight increased 19.15% compared to the control. [Conclusion] Photo-conversion film promotes more crop growth than Iongevous anti-dropping film due to improvement of light quality, air and soil temperature.
基金supported by the Tibetan Natural Scientific Foundation of China (13-28)Tibetan Linzhi National Forest Ecological Research Station (2012-LYPT-DW-016)+1 种基金Promotion Plan of Plateau Basic Ecological Academic Team Abilitysupported by CFERN&GENE Award funds on ecological paper
文摘Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters at the breast height(DBH) A. georgei var. smithii samples were monitored continuously with the thermal dissipation probe for the entire growing period in order to understand the water transportation mechanism and the effects of environmental factors on its transpiration and growth. Relative environment factors, temperature and humidity of air, photosynthetically active radiation, rainfall, and wind speed, soil moisture, etc. were measured by the automatic weather stations. Diurnal and seasonal variations in sap flow rate with the different stem diameters and their correlations with meteorological factors were analyzed. The diurnal change in sap flow velocity showed a single-peak curve at the daily time scale, whereas a lower sap flow velocity can be observed in the largest DBH sample tree at night. The maximum average velocity was observed in August, whereas the minimum velocity was observed in January, and a large amount of water evaporated in summer owing to the higher sap flow velocity. In addition, sap flow velocity was closely related to changes in the micrometeorological factors, with average sap flow velocity showing significant linear correlations with air temperature, photosynthetically active radiation, rainfall, and vapor pressure deficit of air and soil moisture. Therefore, some measures, improving the light and temperature conditions, should be taken for protecting A. georgei var. smithii population in the Tibetan Plateau.
基金supported by an 863 High Technology Project (No. 2006AA10A411) from the Chinese Ministry of Science and Technologyan NSFC grant (No. 30571417)
文摘Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1. The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCl and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCl, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NaCl solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCl solution indicate that external ions may also regulate sperm motility.
文摘From April to December 2018, zooplankton and water quality were monitored in the Daning water storage reservoir of the South-to-North Water Transfer Project. The dominance of plankton was calculated and dominant species of plankton were analyzed. The relationship between dominant species and water environment factors was discussed by canonical correspondence analysis. The results showed that the Daning Water Storage Reservoir identified 12 species of dominant species of phytoplankton in 5 phyla, most of which were common species of freshwater phytoplankton, and there were also eutrophication indicator species, and 10 species of dominant species (genus) of metazoan zooplankton were identified. Four water environment factors affecting dominant species of phytoplankton were screened out, which are chloride, total nitrogen, total phosphorus and nitrate nitrogen respectively. The five water environment factors that affect the dominant species of zooplankton are sulfate, chloride, nitrate nitrogen, water temperature and pH respectively. The temporal distribution of dominant species of plankton in the reservoir is quite different. Diatom and Xanthomonas are mainly affected by the concentration of nitrate in water, while Chlorophyta is mainly affected by chloride and total phosphorus except Scenedesmus obliquus, and Cyanophyta is affected by these four water environment factors. The pH values of Brachionus puledalis, Brachionus angularis, Brachionus plicatilis and Arthropoda are significantly affected by the pH values, while nitrate nitrogen and sulfate are simultaneously affected. Water temperature affects Daphnia magna, Brachionus polycephalus and Brachionus breviscapus, while other metazooplankton are not significantly affected by sulfate, nitrate nitrogen, chloride, water temperature and pH values.
基金Supported by The National Natural Science Foundation of China, No. 30660161Prophase Basic Research Project of Ministry of Science and Technology of China, No. 2005CCA03700, No. 2007CB516804+1 种基金Science and Technology Research Project of Ministry of Education of China, No. 206167Laboratory of Endemic and Ethnic Diseases Program of Xinjiang, No. 200416
文摘AIM: To evaluate the association and interaction of genetic polymorphisms in methylenetetrahydrofolate reductase (MTHER) and cytochrome P4502E1 (CY- P4502E1), environment risk factors with esophageal cancer (EC) in Kazakh, a high EC incidence area of Xinjiang Uygur Autonomous Region, China. METHODS: A 1:2 matched case-control study was conducted with 120 cases of EC and 240 populationor hospital-based controls. The controls were matched for sex, nationality, area of residence and age within a 5-year difference. MTHER and CYP4502E1 genotypes were identified by PCR-based restriction fragment length polymorphism (RFLP). A conditional logistic regression model was established to identify risk factors. The strata method was adopted in interaction analysis. RESULTS: Low consumption of green vegetables and fresh fruits, alcohol drinking, and unsafe water (shallow well, or river) were found to be the risk factors for EC. Individuals with the MTHFR677 (C/T + T/T) genotype had a 2.62-fold (95% CI: 1.61-4.28) risk of developing EC compared with those who carried the C/C genotype. Individuals with the CYP4502EIC1/C1 genotype had a 3.00-fold (95% CI: 1.82-4.96) risk compared with those who carried the CYP4502E1 (C1/C2 + C2/C2) genotype. Gene-environment interaction analysis showed that MTHFR677 gene polymorphism was correlated with consumption of green vegetables and fresh fruit, while CYP4502E1 C1/C1 was correlated with alcohol drinking and unsafe drinking water. MTHFR and CYP4502E1 analysis of gene-gene interaction showed that individuals with the MTHFR677 (C/T + T/T) and CYP4502EIC1/ C1 genotypes had a 7.41-fold (95% CI: 3.60-15.25) risk of developing EC compared with those who carried the MTHFR677C/C and CYP4502E1 RsaI C1/C2 + C2/C2 genes, and the interaction rate was higher than that of the two factors alone. CONCLUSION: Low consumption of green vegetables and fresh fruits, alcohol drinking, and unsafe water (shallow well, or river) and polymorphisms in MTHFR and CYP4502E1 genes are important risk factors for EC. There is a synergistic interaction among polymorphisms in MTHFR and CYP4502E1 genes and environment factors. MTHFR and CYP4502E1 genes can be used as biomarkers for prevention of EC in Kazakh, Xinjiang Uygur Autonomous Region, China.
基金Supported by Knowledge Innovation Project of Institute of Mountain Hazards and Environment,Chinese Academy of Sciences (1100001078)
文摘[Objective] The aim was to analyze the relationship between population distribution and environment factors in mountain area quantitatively.[Method] Taking the contiguous area of Sichuan,Yunnan and Guizhou Province as study object,population density and residential point density were chosen as the indices of population distribution,and the quantitative relationship between population distribution and environment factors (including altitude,topography relief amplitude,land use,road network and river network) in mountain area was analyzed.[Result] Altitude and topography relief amplitude in mountain area had obvious negative correlation with population density and residential point density,and the correlation coefficients with population density were-0.731 and-0.743.In addition,residential points were fewer in the region far from rivers,but there was no obvious correlation between population density and river network density.Residential point density was higher in cultivated land and construction land,and population density had obvious positive correlation with the area proportions of cultivated land and construction land,with the correlation coefficients of 0.895 and 0.726,respectively.Besides,the more distant from road,the smaller residential point density,and there was obvious positive correlation between population density and road network density,with the correlation coefficient of 0.823.[Conclusion] The study could lay a foundation for the further development of spatiality of population data in study region.
基金supported by grants from the National Natural Science Foundation of China(Nos.42172339,91951205)。
文摘Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems.However,the distribution of microbial functional genes and their influencing factors in hot springs remain largely unclear.Therefore,this study investigated the microbial functional genes and their potential for controlling biogeochemical cycles(C,N,S,and P) in the hot Springs of Tengchong,China,using the Geochip method,a functional gene microarray technology.The examined hot springs have very different microbial functional genes.A total of 22 736 gene probe signals were identified,belonging to 567 functional genes and associated with 15 ecological functions,mainly involving stress response,carbon cycle,nitrogen cycle,sulfur cycle,phosphorus cycle and energy processes.The amyA,narG,dsrA and ppx genes were most abundant in carbon,nitrogen,sulfur and phosphorus cycles,respectively,and were significantly correlated with pH,temperature and SO_(4)^(2-).The diversity and abundance of detected gene probes were negatively correlated with temperature.The α-diversity(i.e.,Shannon index) was high at low temperature and low pH.Molecular functional interactions revealed by the gene connectivity levels were negatively correlated with temperature,pH and SO_(4)^(2-).These results suggested that the abundance,diversity and interactions of microbial functional genes were significantly influenced by geochemical parameters.-In addition,some genera possessed functional genes related to carbon,nitrogen,sulfur,and phosphorus cycles and can synergistically control the biogeochemical cycles of carbon,nitrogen,sulfur and phosphorus.These findings provide new insights into the functional potentials of microorganisms to participate in biogeochemical cycles and their responses to environmental factors in hot springs.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)the National Natural Science Foundation of China(32322006)+1 种基金the Major Program for Basic Research Project of Yunnan Province(202103AF140005 and 202101BC070002)the Practice Innovation Fund for Professional Degree Graduates of Yunnan University(ZC-22222401).
文摘The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distribution patterns and dynamics for botanists,ecologists,conservation biologists,and biogeographers.This study proposes a gridded vector data integration method,combining grid-based techniques with vectorization to integrate diverse data types from multiple sources into grids of the same scale.Here we demonstrate the methodology by creating a comprehensive 1°×1°database of western China that includes plant distribution information and environmental factor data.This approach addresses the need for a standardized data system to facilitate exploration of plant distribution patterns and dynamic changes in the region.
文摘As a major global public health issue,tuberculosis is closely related to multiple socio-ecological factors in its epidemiological patterns~([1]).China,as a high-burden country for tuberculosis,exhibits regional variations in the distribution of the tuberculosis epidemic.To enhance the efficiency of prevention and control,its strategies are undergoing a transition toward regionally differentiated approaches~([2]).
基金The Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,China under contract Nos SZ2302 and JG2209.
文摘Macrobenthic organisms are commonly employed as biomonitors for environmental risk assessment.In this study,we aimed to investigate the spatial and temporal patterns of the macrobenthic community,which is influenced by environmental factors of sediments and bottom water layer.We sampled a total of 12,11,10,and 11 stations in the Shengsi Archipelago during June 2010,August 2010,November 2020,and April 2021 respectively.A total of 124 species of macrobenthos were identified,with polychaetes being the dominant group.The abundance,biomass,and diversity indices exhibited no significant temporal differences.Similarly,biodiversity did not exhibit a clear spatial gradient,likely due to the small study area and the absence of significant differences in key factors such as depth.However,the stations with the lowest biodiversity values consistently appeared in the southwest region,possibly due to the impact of human activities.Significant differences in the macrobenthic community were observed between all months except between June and August,and mollusk Endopleura lubrica and polychaete Sigambra hanaokai were important contributors to these differences according to the results of the Similarity Percentages analysis.Suspended particulate matter(SPM)was identified as the primary driving factors of macrobenthic variability.In summary,the community structure underwent temporal changes influenced by complex current patterns,while biodiversity remained relatively stable.This study contributes to our understanding of the key environmental factors affecting macrobenthic communities and biodiversity.It also provides valuable data support for the long-term monitoring of macrobenthos and the environment in the Shengsi Archipelago.
基金supported by the National Key Research and Development Program of China(No.2023YFC3007202)Joint Research Project on Meteorological Capacity Enhancement of the China Meteorological Administration(No.23NLTSZ009)Project of the Department of Science and Technology of Sichuan Province(No.2024YFHZ0098)。
文摘Connection methods are essential for integrating environmental factors with machine learning models for landslide susceptibility assessments.However,current research does not consider the different characteristics of continuity and discreteness within environmental factors and therefore does not analyze the suitability of various connection methods for different factor types.Moreover,the applicability of connection methods remains unclear when slope units are used as the basic assessment units.This study employed slope units as mapping units.The original data of 15 environmental factors,including 12 continuous and three discrete factors,and two connection methods,i.e.,frequency ratio(FR)and modified FR(MFR),were separately used to construct the input datasets for landslide susceptibility modeling.The performance of four widely used machine learning models,random forest(RF),support vector machine(SVM),logistic regression(LR),and multilayer perceptron(MLP),was analyzed to evaluate the suitability of the connection methods for landslide susceptibility mapping.The results show that,in contrast to the decision tree-based RF model,the use of different connection methods for different factor types significantly influences the results of nontree models,including SVM,MLP,and LR.SVM model is the most sensitive to factor types and connection methods.When the MFR is used as the connection method,it improves the mapping results,especially for the SVM model.This shows that it is essential to consider the different characteristics of the data and select an appropriate environmental factor connection strategy to increase the effectiveness of landslide susceptibility evaluation.Furthermore,this study explored the role of connective methods from a sample distribution perspective,providing a theoretical foundation for the more rational and effective integration of environmental factors.
文摘Amid the global shift toward climate governance and low-carbon transformation,accurately quantifying environmental risk factors within green bond pricing mechanisms has emerged as a critical issue.Drawing on data from China’s green bond market between 2018 and 2023,this study develops a multifactor pricing model that integrates environmental risk premiums.Through regression analysis,it empirically investigates the effects of environmental reputation,transparency of information disclosure,and third-party certification on bond risk premiums.The results indicate that green-labeled bonds carry,on average,a 42.6 basis point lower risk premium compared to non-green bonds,while third-party certification further reduces this premium by an additional 54.1 basis points.Moreover,a one standard deviation improvement in the quality of environmental information disclosure leads to a reduction in bond financing costs by approximately 18 to 25 basis points.Issuers operating in high-energy-consuming industries bear significantly higher environmental risk premiums relative to those in low-energy-consuming sectors.By integrating an ESG scoring framework into bond pricing,this study reveals the transmission channels of environmental risks into market pricing and provides a theoretical foundation for enhancing pricing benchmarks in the green bond market.
基金supported by the National Natural Science Foundation of China,Nos.82071190 and 82371438(to LC)Innovative Strong School Project of Guangdong Medical University,No.4SG21230G(to LC)Scientific Research Foundation of Guangdong Medical University,No.GDMUM2020017(to CL)。
文摘Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.
基金Supported by the National Natural Science Foundation of China(No.42077335)。
文摘To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater.
基金Supported by the Innovation Team Project of Ecological Environment Monitoring and Restoration of Fishery Waters in the East China Sea of the Chinese Academy of Fishery Sciences(No.2020TD14)the National Basic Research Program of China(973 Program)(No.2010CB429005)。
文摘The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.
基金This work is supported by the National Natural Science Foundation of China(Nos.51578491 and 52238001).
文摘Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.
基金partially supported by the National Natural Science Foundation of China(Grant No.72174121)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai(Grant No.21ZR1444100)。
文摘During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclusions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics.
基金the Agricultural Science and Technology Innovation Project of Jilin Province(Postdoctoral Fund Project)(CXGC2021RCB007)Agricultural Science and Technology Innovation Project of Jilin Province(Introduction of Doctor and High-Level Talents Project)(CXGC2022RCG008)+1 种基金Jilin Province Science and Technology Development Project(20200403014SF)Agricultural Science and Technology Innovation Project of Jilin Province(CXGC2021ZY036).
文摘Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.
基金supported by Agency for Science,Technology,and Research(A*STAR)BMRC Central Research Fund.
文摘Bispecific antibodies(bsAbs)hold promises for enhanced therapeutic potential surpassing that of their parental monoclonal antibodies.However,bsAbs pose great challenges in their manufacturing,and one of the common reasons is their susceptibility to aggregation.Building on previous studies demonstrating the functionality and potential manufacturability of Fab-scFv format bsAb,this investigation delved into the impact of environmental factors-such as pH,buffer types,ionic strength,protein concentrations,and temperatures-on its stability and the reversal of its self-associated aggregates.Mildly acidic,low-salt conditions were found optimal,ensuring bsAb stability for 30 days even at elevated temperature of 40°C.Furthermore,these conditions facilitated the reversal of its self-associated aggregates to monomers during the initial 7-day incubation period.Our findings underscore the robustness and resilience of Fab-scFv format bsAb,further confirming its potential manufacturability despite its current absence as commercial products.
文摘Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes factors that contribute to crash occurrence based on two national datasets in the United States (CISS and NASS-CDS) for the years 2017-2022 and 2010-2015, respectively. Three taxonomies were applied to enhance understanding of the various crash contributing factors. These taxonomies were developed based on previous research and practice and involved different groupings of human factors, vehicle factors, and roadway and environmental factors. Statistics for grouping the different types of factors and statistics for specific factors are provided. The results indicate that human factors are present in over 95% of crashes, roadway and environmental factors are present in over 45% of crashes, and vehicle factors are present in less than 2% of crashes. Regarding factors related to human error and vehicle maintenance, speeding is involved in over 25% of crashes, distraction is involved in over 20% of crashes, alcohol and drugs are involved in over 9% of crashes, and vehicle maintenance is involved in approximately 0.45% of crashes. Approximately 4.4% of crashes involve a driver who “looked but did not see.” Weather is involved in over 13% of crashes. Conclusions: The findings indicate that, consistent with previous research, human factors or human error are present in around 95% of crashes. Infrastructure and environmental factors contribute to about 45% of crashes. Vehicle factors contribute to only 1.67% - 1.71% of crashes. The results from this study could potentially be used to inform future safety management and improvement activities, including policy-making, regulation development, safe systems and systemic safety approaches to safety management, and other engineering, education, emergency response, enforcement, evaluation, and encouragement activities. The findings could also be used in the development of future Driver Assistance Technologies (DAT) systems and in enhancing existing technologies.