Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a t...Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.展开更多
A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method ha...A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.展开更多
We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projec...We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.展开更多
The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods ar...The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.展开更多
The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of dril...The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.展开更多
This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by cons...This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by constructing multi-layer neural networks to simulate the learning process of the human brain.The article explores the application of deep learning in solving partial differential equations,optimizing problems,and data-driven modeling,and analyzes its advantages in computational efficiency,accuracy,and adaptability.At the same time,this article also points out the challenges faced by deep learning numerical computation methods in terms of computational efficiency,interpretability,and generalization ability,and proposes strategies and future development directions for integrating with traditional numerical methods.展开更多
To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and...To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.展开更多
Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement...Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.展开更多
In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, t...In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.展开更多
In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done t...In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.展开更多
The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,...The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.展开更多
Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important ...Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important component of debris flows and is the most active factor when debris flows oc- cur. Rainfall also determines the temporal and spatial distribution characteristics of the hazards. A reasonable rainfall threshold target is essential to ensuring the accuracy of debris flow pre-warning. Such a threshold is important for the study of the mechanisms of debris flow formation, predicting the characteristics of future activities and the design of prevention and engineering control measures. Most mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming re- gions. Therefore, both the traditional demonstration method and frequency calculated method cannot satisfy the debris flow pre-warning requirements. This study presents the characteristics of pre-warning regions, included the rainfall, hydrologic and topographic conditions. An analogous area with abundant data and the same conditions as the pre-warning region was selected, and the rainfall threshold was calculated by proxy. This method resolved the problem of debris flow pre-warning in ar- eas lacking data and provided a new approach for debris flow pre-warning in mountainous areas.展开更多
All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static ...All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static or dynamic calculation methods. In this paper, the finite element method (FEM) and theoretical analysis method are combined to analyze the structural property, bearing behavior and failure mode of the all-vertical-piled wharf in offshore deep water, and to establish simplified calculation methods determining the horizontal static ultimate bearing capacity and the dynamic response for the all-vertical-piled wharf. Firstly, the bearing capability and failure mechanism for all-vertical-piled wharf are studied by use of FEM, and the failure criterion is put forward for all-vertical-piled wharf based on the 'plastic hinge'. According to the failure criterion and P-Y curve method, the simplified calculation method of the horizontal static ultimate bearing capacity for all-vertical-piled wharf is proposed, and it is verified that the simplified method is reasonable by comparison with the FEM. Secondly, the displacement dynamic magnification factor for the all-vertical-piled wharf under wave cyclic loads and ship impact loads is calculated by the FEM and the theory formula based on the single degree of freedom (SDOF) system. The results obtained by the two methods are in good agreement with each other, and the simplified calculation method of the displacement dynamic magnification factor for all-vertical-piled wharf under dynamic loads is proposed. Then the simplified calculation method determining the dynamic response for the all-vertical-piled wharf is proposed in combination with P-Y curve method. That is, the dynamic response of the structure can be obtained through the static calculation results of P-Y curve method multiplied by the displacement dynamic magnification factor. The feasibility of the simplified dynamic response method is verified by comparison with the FEM under different conditions.展开更多
The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness an...The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness and speed of the calculations. Its application to ternary AI-Si-Mg system is executed in detail. The calculated phase equilibria agree well with the experimental results. Furthermore, the Levenberg-Marquardt method is not sensitive to the initial values.展开更多
The method to predict roll deformation precisely and efficiently is vital for the strip shape control of a six-high rolling mill. Traditional calculation methods of roll deformation, such as the finite element method ...The method to predict roll deformation precisely and efficiently is vital for the strip shape control of a six-high rolling mill. Traditional calculation methods of roll deformation, such as the finite element method and the influence function method, have been widely used due to their accuracies. However, the required calculation time is too long to be applied to the realtime control. Therefore, a rapid calculation method for predicting roll deformation of a six-high rolling mill was proposed, which employed the finite difference method to calculate the roll deflection and used a polynomial to describe the nonlinear relationship between roll flattening and roll contact pressure. Furthermore, a new correction strategy was proposed in the iteration, where the roll center flattening and the roll flattening deviation were put forward and corrected simultaneously in the iteration process according to the static equilibrium of roll. Finally, by the comparison with traditional methods, the proposed method was proved to be more efficient and it was suitable for the online calculation of the strip shape control.展开更多
On the basis of three geological models and several orebody boundaries, a method of grid subdivision and integral has been proposed to calculate and evaluate the resources of cobalt-rich crusts on the seamounts in the...On the basis of three geological models and several orebody boundaries, a method of grid subdivision and integral has been proposed to calculate and evaluate the resources of cobalt-rich crusts on the seamounts in the central Pacific Ocean. The formulas of this method are deduced and the interface of program module is designed. The method is carried out in the software "Auto mapping system of submarine topography and geomorphology MBChart". This method and program will possibly become a potential tool to calculate the resources of seamounts and determine the target diggings for China' s next Five-year Plan.展开更多
This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Car...This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.展开更多
For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low vo...For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low voltage problems were highlighted in the rural power grid due to the characteristics of rural power grid. Using the distribution network flow calculation method, we evaluated the low voltage problems of the rural power grid which belongs to Chongqing Jiangbei Power Company. In addition, we collected the data of distribution transformers in electricity consumption peak period. Some practical management strategies were proposed by the analysis and evaluation of potential and appeared low voltage problems.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
基金co-supported by the National Natural Science Foundation of China(No.12072365)the Technology Innovation Team of Manned Space Engineering,China。
文摘Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.
基金supported by the Natural Science Foundation of China under Grant U22A20214 and Grant 51837010。
文摘A versatile analytical method(VAM) for calculating the harmonic components of the magnetomotive force(MMF) generated by diverse armature windings in AC machines has been proposed, and the versatility of this method has been established in early literature. However, its practical applications and significance in advancing the analysis of AC machines need further elaboration. This paper aims to complement VAM by augmenting its theory, offering additional insights into its conclusions, as well as demonstrating its utility in assessing armature windings and its application of calculating torque for permanent magnet synchronous machines(PMSM). This work contributes to advancing the analysis of AC machines and underscores the potential for improved design and performance optimization.
基金financial support from the National Natural Science Foundation of China (Grant No. 12227901)the financial support from the National Natural Science Foundation of China (Grant Nos. 11974263 and 12174291)。
文摘We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
基金funded by the National Natural Science Foundation of China (42174131)。
文摘The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(52174003,52374008).
文摘The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.
文摘This article reviews the application and progress of deep learning in efficient numerical computing methods.Deep learning,as an important branch of machine learning,provides new ideas for numerical computation by constructing multi-layer neural networks to simulate the learning process of the human brain.The article explores the application of deep learning in solving partial differential equations,optimizing problems,and data-driven modeling,and analyzes its advantages in computational efficiency,accuracy,and adaptability.At the same time,this article also points out the challenges faced by deep learning numerical computation methods in terms of computational efficiency,interpretability,and generalization ability,and proposes strategies and future development directions for integrating with traditional numerical methods.
基金the National Natural Science Foundation of China(Grant Nos.52104133 and 52304227)the Postdoctoral Foundation of Henan Province(Grant No.HN2022015)are appreciated.
文摘To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.
文摘Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.
基金The National Natural Science Foundation of China(No.51138002)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201452)the Open Fund of Shanghai Key Laboratory of Engineering Structure Safety(No.2015-KF06)
文摘In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.
基金supported by the National Natural Science Foundation of China (Grant No. 51009092)the Doctoral Foundation of Education Ministry of China (Grant No. 20090073120013)the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.
基金Sponsored by the National Natural Science Foundation of China (10672080)
文摘The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.
基金supported by the National Natural Science Foundation of China(Nos.40830742 and 40901007)
文摘Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important component of debris flows and is the most active factor when debris flows oc- cur. Rainfall also determines the temporal and spatial distribution characteristics of the hazards. A reasonable rainfall threshold target is essential to ensuring the accuracy of debris flow pre-warning. Such a threshold is important for the study of the mechanisms of debris flow formation, predicting the characteristics of future activities and the design of prevention and engineering control measures. Most mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming re- gions. Therefore, both the traditional demonstration method and frequency calculated method cannot satisfy the debris flow pre-warning requirements. This study presents the characteristics of pre-warning regions, included the rainfall, hydrologic and topographic conditions. An analogous area with abundant data and the same conditions as the pre-warning region was selected, and the rainfall threshold was calculated by proxy. This method resolved the problem of debris flow pre-warning in ar- eas lacking data and provided a new approach for debris flow pre-warning in mountainous areas.
基金financially supported by the Education Commission Fund of Chongqing(Grant No.KJ1500518)the Science Commission Fund of Chongqing(Grant No.cstc2016jcyjA0123)the Open Fund of Key Laboratory of Regulation Technology for Inland Waterway in Transportation Industry of Chongqing Jiaotong University(Grant No.NHHD-201506)
文摘All-vertical-piled wharf is a kind of high-piled wharf, but it is extremely different from the traditional ones in some aspects, such as the structural property, bearing characteristics, failure mechanism, and static or dynamic calculation methods. In this paper, the finite element method (FEM) and theoretical analysis method are combined to analyze the structural property, bearing behavior and failure mode of the all-vertical-piled wharf in offshore deep water, and to establish simplified calculation methods determining the horizontal static ultimate bearing capacity and the dynamic response for the all-vertical-piled wharf. Firstly, the bearing capability and failure mechanism for all-vertical-piled wharf are studied by use of FEM, and the failure criterion is put forward for all-vertical-piled wharf based on the 'plastic hinge'. According to the failure criterion and P-Y curve method, the simplified calculation method of the horizontal static ultimate bearing capacity for all-vertical-piled wharf is proposed, and it is verified that the simplified method is reasonable by comparison with the FEM. Secondly, the displacement dynamic magnification factor for the all-vertical-piled wharf under wave cyclic loads and ship impact loads is calculated by the FEM and the theory formula based on the single degree of freedom (SDOF) system. The results obtained by the two methods are in good agreement with each other, and the simplified calculation method of the displacement dynamic magnification factor for all-vertical-piled wharf under dynamic loads is proposed. Then the simplified calculation method determining the dynamic response for the all-vertical-piled wharf is proposed in combination with P-Y curve method. That is, the dynamic response of the structure can be obtained through the static calculation results of P-Y curve method multiplied by the displacement dynamic magnification factor. The feasibility of the simplified dynamic response method is verified by comparison with the FEM under different conditions.
基金This research is supported by the State Key Fundamental Research Project(G2000067202-1).
文摘The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness and speed of the calculations. Its application to ternary AI-Si-Mg system is executed in detail. The calculated phase equilibria agree well with the experimental results. Furthermore, the Levenberg-Marquardt method is not sensitive to the initial values.
基金This work was financially supported by the National Natural Science Foundation of China (51674028), and Fundamental Research Funds for the Central Universities (FRF-IC- 16-001).
文摘The method to predict roll deformation precisely and efficiently is vital for the strip shape control of a six-high rolling mill. Traditional calculation methods of roll deformation, such as the finite element method and the influence function method, have been widely used due to their accuracies. However, the required calculation time is too long to be applied to the realtime control. Therefore, a rapid calculation method for predicting roll deformation of a six-high rolling mill was proposed, which employed the finite difference method to calculate the roll deflection and used a polynomial to describe the nonlinear relationship between roll flattening and roll contact pressure. Furthermore, a new correction strategy was proposed in the iteration, where the roll center flattening and the roll flattening deviation were put forward and corrected simultaneously in the iteration process according to the static equilibrium of roll. Finally, by the comparison with traditional methods, the proposed method was proved to be more efficient and it was suitable for the online calculation of the strip shape control.
基金This study was supported by Projects under contract Nos DY105 China's 0cean-03-01-01 and DY105-03-01-07the National Natural Science Foundation of China under contract No.40506017the Youth Foundation of Marine High-tech Project of China under contract No.2002AA616010.
文摘On the basis of three geological models and several orebody boundaries, a method of grid subdivision and integral has been proposed to calculate and evaluate the resources of cobalt-rich crusts on the seamounts in the central Pacific Ocean. The formulas of this method are deduced and the interface of program module is designed. The method is carried out in the software "Auto mapping system of submarine topography and geomorphology MBChart". This method and program will possibly become a potential tool to calculate the resources of seamounts and determine the target diggings for China' s next Five-year Plan.
基金supported by the National Water Pollution Control and Management Technology Major Projects(Grant No. 2009ZX07423-001)the National Natural Science Foundation of China (Grants No.51179069and 40971300)the Fundamental Research Funds for the Central Universities (Grants No.10QX43,09MG16,and 10QG23)
文摘This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.
文摘For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low voltage problems were highlighted in the rural power grid due to the characteristics of rural power grid. Using the distribution network flow calculation method, we evaluated the low voltage problems of the rural power grid which belongs to Chongqing Jiangbei Power Company. In addition, we collected the data of distribution transformers in electricity consumption peak period. Some practical management strategies were proposed by the analysis and evaluation of potential and appeared low voltage problems.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.