Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-...Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.展开更多
Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multi...Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j.展开更多
Cloud data centers have become overwhelmed with data-intensive applications due to the limited computational capabilities of mobile terminals.Mobile edge computing is emerging as a potential paradigm to host applicati...Cloud data centers have become overwhelmed with data-intensive applications due to the limited computational capabilities of mobile terminals.Mobile edge computing is emerging as a potential paradigm to host application execution at the edge of networks to reduce transmission delays.Compute nodes are usually distributed in edge environments,enabling crucially efficient task scheduling among those nodes to achieve reduced processing time.Moreover,it is imperative to conserve edge server energy,enhancing their lifetimes.To this end,this paper proposes a novel task scheduling algorithm named Energy-aware Double-fitness Particle Swarm Optimization(EA-DFPSO)that is based on an improved particle swarm optimization algorithm for achieving energy efficiency in an edge computing environment along with minimal task execution time.The proposed EA-DFPSO algorithm applies a dual fitness function to search for an optimal tasks-scheduling scheme for saving edge server energy while maintaining service quality for tasks.Extensive experimentation demonstrates that our proposed EA-DFPSO algorithm outperforms the existing traditional scheduling algorithms to achieve reduced task completion time and conserve energy in an edge computing environment.展开更多
Energy-efficient retrofitting(EER)of existing buildings has significant potential for addressing energy and environmental issues.However,the traditional market trading model is characterized by an inefficient dissemin...Energy-efficient retrofitting(EER)of existing buildings has significant potential for addressing energy and environmental issues.However,the traditional market trading model is characterized by an inefficient dissemination of critical information,which leads to insufficient incentives for market participants to trade.To solve these problems,this study constructs a three-party evolutionary game model with energy saving service companies(ESCO),homeowners,and trading information platforms as the main players,analyzes the interaction and evolution of the three parties'strategies under the scenario of government rewards and penalties,and explores the effects of the three parties'initial willingness and changes of model parameters on the evolution of their strategies.There are some findings as follows:first,the positive transactions of homeowners and ESCOs have less influence on the platform side;second,compared with homeowners,the government penalties have more obvious constraints on the platform side and ESCOs;third,government subsidies and EER revenues are the important factors influencing the speed of the evolution of three-party strategies,fourth,platform service compensation,the factors governing cost and benefit sharing are pivotal in determining the alignment of strategic choices among the three parties involved.Based on the research conclusions.This study offers theoretical guidance for the advancement of platform-based market transactions for EER.展开更多
The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to t...The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to the IoT systems demands a communication network capable of handling vast amounts of data with minimal delay.These generated enormous complex,high-dimensional,high-volume,and high-speed data also brings challenges on its storage,transmission,processing,and energy cost,due to the limited computing capabilities,battery capacity,memory,and energy utilization of current IoT networks.In this paper,a seamless architecture by combining mobile and cloud computing is proposed.It can agilely bargain with 5G-IoT devices,sensor nodes,and mobile computing in a distributed manner,enabling minimized energy cost,high interoperability,and high scalability as well as overcoming the memory constraints.An artificial intelligence(AI)-powered green and energy-efficient architecture is then proposed for 5G-IoT systems and sustainable smart cities.The experimental results reveal that the proposed approach dramatically reduces the transmitted data volume and power consumption and yields superior results regarding interoperability,compression ratio,and energy saving.This is especially critical in enabling the deployment of 5G and even 6G wireless systems for smart cities.展开更多
In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper st...In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.展开更多
The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and mai...The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.展开更多
Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development o...Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.展开更多
The MAC protocol design for wireless sensor networks has been researched and developed for decades. SMAC protocol is a famous energy-efficient MAC protocol. Based on SMAC protocol, we find that the boundary nodes in t...The MAC protocol design for wireless sensor networks has been researched and developed for decades. SMAC protocol is a famous energy-efficient MAC protocol. Based on SMAC protocol, we find that the boundary nodes in the cluster-shaped synchronization structure bring energy consumption seriously, and provide a virtual cluster aggregation (VCA) algorithm. Because the bounder node follows multiple schedules in one cycle, it may deplete earlier and cause segmentation in wireless sensor networks. The algorithm reduces energy consumption of boundary nodes and extends the lifetime of entire sensor network by merging different virtual clusters, but increases the data transmission delay. Because the sensor nodes have the fixed duty cycle, the larger the coverage area of network is, the greater the data transmission delay increases. We propose the dynamic duty cycle (DDC) algorithm to solve this effect. When the network load and data transmission delay increase, the DDC algorithm exponentially changes the duty cycle of the node to reduce latency. The simulation results show that the performance of SMAC with the VCA and DDC algorithm obtains improvement significantly.展开更多
A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic...A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability.展开更多
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c...Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.展开更多
An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their level...An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.展开更多
UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we inve...UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.展开更多
To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel c...To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.展开更多
Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and th...Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and their service time powered by rechargeable batteries.In addition,Orthogonal Multiple Access(OMA)technique cannot utilize limited spectrum resources fully and efficiently.Therefore,Non-Orthogonal Multiple Access(NOMA)-based energy-efficient task scheduling among MEC servers for delay-constraint mobile applications is important,especially in highly-dynamic vehicular edge computing networks.The various movement patterns of vehicles lead to unbalanced offloading requirements and different load pressure for MEC servers.Self-Imitation Learning(SIL)-based Deep Reinforcement Learning(DRL)has emerged as a promising machine learning technique to break through obstacles in various research fields,especially in time-varying networks.In this paper,we first introduce related MEC technologies in vehicular networks.Then,we propose an energy-efficient approach for task scheduling in vehicular edge computing networks based on DRL,with the purpose of both guaranteeing the task latency requirement for multiple users and minimizing total energy consumption of MEC servers.Numerical results demonstrate that the proposed algorithm outperforms other methods.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC ...Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC system thanks to their high mobility and flexibility.In this paper,we investigate the problem of energy efficiency(EE)for an energy-limited backscatter communication(BC)network,where backscatter devices(BDs)on the ground harvest energy from the wireless signal of a flying rotary-wing quadrotor.Specifically,we first reformulate the EE optimization problem as a Markov decision process(MDP)and then propose a deep reinforcement learning(DRL)algorithm to design the UAV trajectory with the constraints of the BD scheduling,the power reflection coefficients,the transmission power,and the fairness among BDs.Simulation results show the proposed DRL algorithm achieves close-to-optimal performance and significant EE gains compared to the benchmark schemes.展开更多
In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase o...In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase of network capacity is heavily more than the increase of the network energy efficiency in recent years,which could lead to more energy consumption per transmitted bit in the future network.As basic units in mobile communication systems,microwave/RF components and modules play key roles展开更多
Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications...Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.展开更多
This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration...This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.展开更多
基金Projects(61572525,61272148)supported by the National Natural Science Foundation of ChinaProject(20120162110061)supported by the PhD Programs Foundation of Ministry of Education of China+1 种基金Project(CX2014B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.
基金support under the Multi-Disciplinary Research(MDR)Grant(H470)the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2019/TK04/UTHM/02/8).
文摘Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j.
基金supported by UK-Jiangsu 20-20 World Class University Initiative programme.
文摘Cloud data centers have become overwhelmed with data-intensive applications due to the limited computational capabilities of mobile terminals.Mobile edge computing is emerging as a potential paradigm to host application execution at the edge of networks to reduce transmission delays.Compute nodes are usually distributed in edge environments,enabling crucially efficient task scheduling among those nodes to achieve reduced processing time.Moreover,it is imperative to conserve edge server energy,enhancing their lifetimes.To this end,this paper proposes a novel task scheduling algorithm named Energy-aware Double-fitness Particle Swarm Optimization(EA-DFPSO)that is based on an improved particle swarm optimization algorithm for achieving energy efficiency in an edge computing environment along with minimal task execution time.The proposed EA-DFPSO algorithm applies a dual fitness function to search for an optimal tasks-scheduling scheme for saving edge server energy while maintaining service quality for tasks.Extensive experimentation demonstrates that our proposed EA-DFPSO algorithm outperforms the existing traditional scheduling algorithms to achieve reduced task completion time and conserve energy in an edge computing environment.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)the Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘Energy-efficient retrofitting(EER)of existing buildings has significant potential for addressing energy and environmental issues.However,the traditional market trading model is characterized by an inefficient dissemination of critical information,which leads to insufficient incentives for market participants to trade.To solve these problems,this study constructs a three-party evolutionary game model with energy saving service companies(ESCO),homeowners,and trading information platforms as the main players,analyzes the interaction and evolution of the three parties'strategies under the scenario of government rewards and penalties,and explores the effects of the three parties'initial willingness and changes of model parameters on the evolution of their strategies.There are some findings as follows:first,the positive transactions of homeowners and ESCOs have less influence on the platform side;second,compared with homeowners,the government penalties have more obvious constraints on the platform side and ESCOs;third,government subsidies and EER revenues are the important factors influencing the speed of the evolution of three-party strategies,fourth,platform service compensation,the factors governing cost and benefit sharing are pivotal in determining the alignment of strategic choices among the three parties involved.Based on the research conclusions.This study offers theoretical guidance for the advancement of platform-based market transactions for EER.
文摘The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to the IoT systems demands a communication network capable of handling vast amounts of data with minimal delay.These generated enormous complex,high-dimensional,high-volume,and high-speed data also brings challenges on its storage,transmission,processing,and energy cost,due to the limited computing capabilities,battery capacity,memory,and energy utilization of current IoT networks.In this paper,a seamless architecture by combining mobile and cloud computing is proposed.It can agilely bargain with 5G-IoT devices,sensor nodes,and mobile computing in a distributed manner,enabling minimized energy cost,high interoperability,and high scalability as well as overcoming the memory constraints.An artificial intelligence(AI)-powered green and energy-efficient architecture is then proposed for 5G-IoT systems and sustainable smart cities.The experimental results reveal that the proposed approach dramatically reduces the transmitted data volume and power consumption and yields superior results regarding interoperability,compression ratio,and energy saving.This is especially critical in enabling the deployment of 5G and even 6G wireless systems for smart cities.
基金supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB114 and 2023BAB094).
文摘In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.
基金supported in part by the National Natural Science Foundation of China under Grants 62171154in part by the National Natural Science Foundation of Shandong Province under Grant ZR2020MF007+1 种基金in part by the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology under Grant 2018B030322004in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2023030。
文摘The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.
基金supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(No.294931)the National Science Foundation of China (No.51175262)+1 种基金Jiangsu Province Science Foundation for Excellent Youths(No.BK2012032)Jiangsu Province Industry-Academy-Research Grant(No.BY201220116)
文摘Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.
基金Sponsored by the Important National Science and Technology Specific Projects( Grant No. 2012ZX03004003)the National Natural Science Foundation of China( Grant No. 61171110)
文摘The MAC protocol design for wireless sensor networks has been researched and developed for decades. SMAC protocol is a famous energy-efficient MAC protocol. Based on SMAC protocol, we find that the boundary nodes in the cluster-shaped synchronization structure bring energy consumption seriously, and provide a virtual cluster aggregation (VCA) algorithm. Because the bounder node follows multiple schedules in one cycle, it may deplete earlier and cause segmentation in wireless sensor networks. The algorithm reduces energy consumption of boundary nodes and extends the lifetime of entire sensor network by merging different virtual clusters, but increases the data transmission delay. Because the sensor nodes have the fixed duty cycle, the larger the coverage area of network is, the greater the data transmission delay increases. We propose the dynamic duty cycle (DDC) algorithm to solve this effect. When the network load and data transmission delay increase, the DDC algorithm exponentially changes the duty cycle of the node to reduce latency. The simulation results show that the performance of SMAC with the VCA and DDC algorithm obtains improvement significantly.
基金supported by the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(Nos.61702315,61802092)+1 种基金the Applied Basic Research Plan of Shanxi Province(No.2201901D211168)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005409)
文摘An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.
基金supported by the National Natural Science Foundation of China under Grant No. 61771488in part by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034+1 种基金 in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratorythe Guang Xi Universities Key Laboratory Fund of Embedded Technology and Intelligent System (Guilin University of Technology)
文摘UAV cooperative control has been applied in many complex UAV communication networks. It remains challenging to develop UAV cooperative coverage and UAV energy-efficient communication technology. In this paper, we investigate current works about UAV coverage problem and propose a multi-UAV coverage model based on energy-efficient communication. The proposed model is decomposed into two steps: coverage maximization and power control, both are proved to be exact potential games(EPG) and have Nash equilibrium(NE) points. Then the multi-UAV energy-efficient coverage deployment algorithm based on spatial adaptive play(MUECD-SAP) is adopted to perform coverage maximization and power control, which guarantees optimal energy-efficient coverage deployment. Finally, simulation results show the effectiveness of our proposed approach, and confirm the reliability of proposed model.
基金supported by Postdoctoral Science Foundation of China(No.2021M702441)National Natural Science Foundation of China(No.61871283)。
文摘To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.
基金supported in part by the National Natural Science Foundation of China under Grant 61971084 and Grant 62001073in part by the National Natural Science Foundation of Chongqing under Grant cstc2019jcyj-msxmX0208in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University,under Grant 2020D05.
文摘Mobile Edge Computing(MEC)is promising to alleviate the computation and storage burdens for terminals in wireless networks.The huge energy consumption of MEC servers challenges the establishment of smart cities and their service time powered by rechargeable batteries.In addition,Orthogonal Multiple Access(OMA)technique cannot utilize limited spectrum resources fully and efficiently.Therefore,Non-Orthogonal Multiple Access(NOMA)-based energy-efficient task scheduling among MEC servers for delay-constraint mobile applications is important,especially in highly-dynamic vehicular edge computing networks.The various movement patterns of vehicles lead to unbalanced offloading requirements and different load pressure for MEC servers.Self-Imitation Learning(SIL)-based Deep Reinforcement Learning(DRL)has emerged as a promising machine learning technique to break through obstacles in various research fields,especially in time-varying networks.In this paper,we first introduce related MEC technologies in vehicular networks.Then,we propose an energy-efficient approach for task scheduling in vehicular edge computing networks based on DRL,with the purpose of both guaranteeing the task latency requirement for multiple users and minimizing total energy consumption of MEC servers.Numerical results demonstrate that the proposed algorithm outperforms other methods.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金the National Natural Science Foundation of China 61661021,61971191,61902214,and 61871321,in part by the Beijing Natural Science Foundation under Grant L182018,in part by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant 2016ZX03001014-006in part by the open project of Shanghai Institute of Microsystem and Information Technology(20190910)+1 种基金in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the open project of Key Laboratory of Wireless Sensor Network&Communication,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,865 Changning Road,Shanghai 200050 China,and in part by the Tsinghua University Initiative Scientific Research Program 2019Z08QCX19.
文摘Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC system thanks to their high mobility and flexibility.In this paper,we investigate the problem of energy efficiency(EE)for an energy-limited backscatter communication(BC)network,where backscatter devices(BDs)on the ground harvest energy from the wireless signal of a flying rotary-wing quadrotor.Specifically,we first reformulate the EE optimization problem as a Markov decision process(MDP)and then propose a deep reinforcement learning(DRL)algorithm to design the UAV trajectory with the constraints of the BD scheduling,the power reflection coefficients,the transmission power,and the fairness among BDs.Simulation results show the proposed DRL algorithm achieves close-to-optimal performance and significant EE gains compared to the benchmark schemes.
文摘In the coexisted world of 3G,4G,5G and many other specialized wireless communication systems,billions of connections could be existing for various information transmission types.Unluckily,data show that the increase of network capacity is heavily more than the increase of the network energy efficiency in recent years,which could lead to more energy consumption per transmitted bit in the future network.As basic units in mobile communication systems,microwave/RF components and modules play key roles
文摘Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.
基金National Natural Science Foundation of China(No.61871241)Nantong Science and Technology Project(JC2019114,JC2021129).
文摘This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.