期刊文献+
共找到16,731篇文章
< 1 2 250 >
每页显示 20 50 100
End-To-End Encryption Enabled Lightweight Mutual Authentication Scheme for Resource Constrained IoT Network
1
作者 Shafi Ullah Haidawati Muhammad Nasir +5 位作者 Kushsairy Kadir Akbar Khan Ahsanullah Memon Shanila Azhar Ilyas Khan Muhammad Ashraf 《Computers, Materials & Continua》 2025年第2期3223-3249,共27页
Machine-to-machine (M2M) communication networks consist of resource-constrained autonomous devices, also known as autonomous Internet of things (IoTs) or machine-type communication devices (MTCDs) which act as a backb... Machine-to-machine (M2M) communication networks consist of resource-constrained autonomous devices, also known as autonomous Internet of things (IoTs) or machine-type communication devices (MTCDs) which act as a backbone for Industrial IoT, smart cities, and other autonomous systems. Due to the limited computing and memory capacity, these devices cannot maintain strong security if conventional security methods are applied such as heavy encryption. This article proposed a novel lightweight mutual authentication scheme including elliptic curve cryptography (ECC) driven end-to-end encryption through curve25519 such as (i): efficient end-to-end encrypted communication with pre-calculation strategy using curve25519;and (ii): elliptic curve Diffie-Hellman (ECDH) based mutual authentication technique through a novel lightweight hash function. The proposed scheme attempts to efficiently counter all known perception layer security threats. Moreover, the pre-calculated key generation strategy resulted in cost-effective encryption with 192-bit curve security. It showed comparative efficiency in key strength, and curve strength compared with similar authentication schemes in terms of computational and memory cost, communication performance and encryption robustness. 展开更多
关键词 Mutual authentication lightweight end-to-end encryption elliptic curve cryptography industrial internet of things curve25519 machine-to-machine communication
在线阅读 下载PDF
End-to-End Encryption in Messaging Services and National Security—Case of WhatsApp Messenger 被引量:1
2
作者 Robert E. Endeley 《Journal of Information Security》 2018年第1期95-99,共5页
The ubiquity of instant messaging services on mobile devices and their use of end-to-end encryption in safeguarding the privacy of their users have become a concern for some governments. WhatsApp messaging service has... The ubiquity of instant messaging services on mobile devices and their use of end-to-end encryption in safeguarding the privacy of their users have become a concern for some governments. WhatsApp messaging service has emerged as the most popular messaging app on mobile devices today. It uses end-to-end encryption which makes government and secret services efforts to combat organized crime, terrorists, and child pornographers technically impossible. Governments would like a “backdoor” into such apps, to use in accessing messages and have emphasized that they will only use the “backdoor” if there is a credible threat to national security. Users of WhatsApp have however, argued against a “backdoor”;they claim a “backdoor” would not only be an infringement of their privacy, but that hackers could also take advantage of it. In light of this security and privacy conflict between the end users of WhatsApp and government’s need to access messages in order to thwart potential terror attacks, this paper presents the advantages of maintaining E2EE in WhatsApp and why governments should not be allowed a “backdoor” to access users’ messages. This research presents the benefits encryption has on consumer security and privacy, and also on the challenges it poses to public safety and national security. 展开更多
关键词 INSTANT MESSAGING WhatsApp end-to-end encryption National Security Privacy
在线阅读 下载PDF
A New Image Encryption Algorithm Based on Cantor Diagonal Matrix and Chaotic Fractal Matrix
3
作者 Hongyu Zhao Shengsheng Wang 《Computers, Materials & Continua》 2026年第1期636-660,共25页
Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes ... Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology. 展开更多
关键词 Image encryption spatiotemporal chaotic system chaotic fractal matrix cantor diagonal matrix
在线阅读 下载PDF
Curve25519 based lightweight end-to-end encryption in resource constrained autonomous 8-bit IoT devices
4
作者 Shafi Ullah Raja Zahilah 《Cybersecurity》 EI CSCD 2021年第1期147-159,共13页
Robust encryption techniques require heavy computational capability and consume large amount of memory which are unaffordable for resource constrained IoT devices and Cyber-Physical Systems with an inclusion of genera... Robust encryption techniques require heavy computational capability and consume large amount of memory which are unaffordable for resource constrained IoT devices and Cyber-Physical Systems with an inclusion of general-purpose data manipulation tasks.Many encryption techniques have been introduced to address the inability of such devices,lacking in robust security provision at low cost.This article presents an encryption technique,implemented on a resource constrained IoT device(AVR ATmega2560)through utilizing fast execution and less memory consumption properties of curve25519 in a novel and efficient lightweight hash function.The hash function utilizes GMP library for multi-precision arithmetic calculations and pre-calculated curve points to devise a good cipher block using ECDH based key exchange protocols and large random prime number generator function. 展开更多
关键词 Cyber-physical systems IOT Resource constrained IoT devices Lightweight encryption end-to-end encryption Elliptic curve cryptography Curve25519
原文传递
Research on End-to-End Encryption of TETRA
5
作者 ZHANG Zhi-hui YANG Yi-xian 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2006年第2期70-73,共4页
The Terrestrial Trunked Radio(TETRA) system uses end-to-end encryption in addition to the air interface encryption to provide enhanced security. The TETRA system uses a synchronization technique known as frame steal... The Terrestrial Trunked Radio(TETRA) system uses end-to-end encryption in addition to the air interface encryption to provide enhanced security. The TETRA system uses a synchronization technique known as frame stealing to provide synchronization of end-to-end encrypted data. However, the frame stealing process degrades the quality of video. This paper proposes an end-to-end encryption system with the frame stealing technique for voice and frame insertion for video. A block cipher in the output feedback mode is used to implement the end-to-end key stream generator. Moreover. In the Short Data Service(SDS) message encryption , a block cipher in the Cipher Block Chaining (CBC) mode is used to calculate the cryptographically secure checksum, which is sufficient to certify the integrity. 展开更多
关键词 TETRA end-to-end encryption CONFIDENTIALITY INTEGRITY
原文传递
Medical Image Encryption Based on Fisher-Yates Scrambling and Filter Diffusion 被引量:1
6
作者 HUANG Jiacin GUO Yali +1 位作者 GAO Ruoyun LI Shanshan 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期136-152,共17页
A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic... A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research. 展开更多
关键词 medical image encryption Fisher-Yates scrambling three-dimensional filter diffusion bidirectional diffusion S-box substitution
原文传递
Non-Deterministic Symmetric Encryption Communication System Based on Generative Adversarial Networks
7
作者 Wu Xuguang Han Yiliang +2 位作者 Zhang Minqing Zhu Shuaishuai Li Yu 《China Communications》 2025年第5期273-284,共12页
Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will ... Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will lead to the same ciphertext.This means that the key in the deterministic encryption algorithm can only be used once,thus the encryption is not practical.To solve this problem,a nondeterministic symmetric encryption end-to-end communication system based on generative adversarial networks is proposed.We design a nonce-based adversarial neural network model,where a“nonce”standing for“number used only once”is passed to communication participants,and does not need to be secret.Moreover,we optimize the network structure through adding Batch Normalization(BN)to the CNNs(Convolutional Neural Networks),selecting the appropriate activation functions,and setting appropriate CNNs parameters.Results of experiments and analysis show that our system can achieve non-deterministic symmetric encryption,where Alice encrypting the same plaintext with the key twice will generate different ciphertexts,and Bob can decrypt all these different ciphertexts of the same plaintext to the correct plaintext.And our proposed system has fast convergence and the correct rate of decryption when the plaintext length is 256 or even longer. 展开更多
关键词 end-to-end communication systems generative adversarial networks symmetric encryption
在线阅读 下载PDF
Public-Key Function-Private Inner-Product Predicate Encryption from Pairings
8
作者 WAN Ming WANG Geng GU Da-Wu 《密码学报(中英文)》 北大核心 2025年第1期227-246,共20页
This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals noth... This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model. 展开更多
关键词 predicate encryption function privacy inner product generic group model
在线阅读 下载PDF
Random Strip Peeling:A novel lightweight image encryption for IoT devices based on colour planes permutation
9
作者 Kenan Ince Cemile Ince Davut Hanbay 《CAAI Transactions on Intelligence Technology》 2025年第2期529-544,共16页
This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevale... This paper introduces a novel lightweight colour image encryption algorithm,specifically designed for resource-constrained environments such as Internet of Things(IoT)devices.As IoT systems become increasingly prevalent,secure and efficient data transmission becomes crucial.The proposed algorithm addresses this need by offering a robust yet resource-efficient solution for image encryption.Traditional image encryption relies on confusion and diffusion steps.These stages are generally implemented linearly,but this work introduces a new RSP(Random Strip Peeling)algorithm for the confusion step,which disrupts linearity in the lightweight category by using two different sequences generated by the 1D Tent Map with varying initial conditions.The diffusion stage then employs an XOR matrix generated by the Logistic Map.Different evaluation metrics,such as entropy analysis,key sensitivity,statistical and differential attacks resistance,and robustness analysis demonstrate the proposed algorithm's lightweight,robust,and efficient.The proposed encryption scheme achieved average metric values of 99.6056 for NPCR,33.4397 for UACI,and 7.9914 for information entropy in the SIPI image dataset.It also exhibits a time complexity of O(2×M×N)for an image of size M×N. 展开更多
关键词 chaotic encryption image scrambling algorithm lightweight image encryption symmetric encryption
在线阅读 下载PDF
Approximate Homomorphic Encryption for MLaaS by CKKS with Operation-Error-Bound
10
作者 Ray-I Chang Chia-Hui Wang +1 位作者 Yen-Ting Chang Lien-Chen Wei 《Computers, Materials & Continua》 2025年第10期503-518,共16页
As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be t... As data analysis often incurs significant communication and computational costs,these tasks are increasingly outsourced to cloud computing platforms.However,this introduces privacy concerns,as sensitive data must be transmitted to and processed by untrusted parties.To address this,fully homomorphic encryption(FHE)has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service(MLaaS),enabling computation on encrypted data without revealing the plaintext.Nevertheless,FHE remains computationally expensive.As a result,approximate homomorphic encryption(AHE)schemes,such as CKKS,have attracted attention due to their efficiency.In our previous work,we proposed RP-OKC,a CKKS-based clustering scheme implemented via TenSEAL.However,errors inherent to CKKS operations—termed CKKS-errors—can affect the accuracy of the result after decryption.Since these errors can be mitigated through post-decryption rounding,we propose a data pre-scaling technique to increase the number of significant digits and reduce CKKS-errors.Furthermore,we introduce an Operation-Error-Estimation(OEE)table that quantifies upper-bound error estimates for various CKKS operations.This table enables error-aware decryption correction,ensuring alignment between encrypted and plaintext results.We validate our method on K-means clustering using the Kaggle Customer Segmentation dataset.Experimental results confirm that the proposed scheme enhances the accuracy and reliability of privacy-preserving data analysis in cloud environments. 展开更多
关键词 Privacy protection K-means clustering cloud computing approximate homomorphic encryption fully homomorphic encryption
在线阅读 下载PDF
A Brief Discussion on Data Encryption and Decryption Technology and Its Applications
11
作者 Zhihong Jin 《Journal of Electronic Research and Application》 2025年第2期159-165,共7页
With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role i... With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers. 展开更多
关键词 Data encryption Data decryption Communication security Data storage encryption Key management
在线阅读 下载PDF
IDCE:Integrated Data Compression and Encryption for Enhanced Security and Efficiency
12
作者 Muhammad Usama Arshad Aziz +2 位作者 Suliman A.Alsuhibany Imtiaz Hassan Farrukh Yuldashev 《Computer Modeling in Engineering & Sciences》 2025年第4期1029-1048,共20页
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da... Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field. 展开更多
关键词 Chaotic maps SECURITY data compression data encryption integrated compression and encryption
在线阅读 下载PDF
Enhancing Post-Quantum Information Security: A Novel Two-Dimensional Chaotic System for Quantum Image Encryption
13
作者 Fatima Asiri Wajdan Al Malwi 《Computer Modeling in Engineering & Sciences》 2025年第5期2053-2077,共25页
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica... Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications. 展开更多
关键词 Information security chaotic map modeling post-quantum security quantum image encryption chaotic map image encryption
在线阅读 下载PDF
Adaptive Attribute-Based Honey Encryption: A Novel Solution for Cloud Data Security
14
作者 Reshma Siyal Muhammad Asim +4 位作者 Long Jun Mohammed Elaffendi Sundas Iftikhar Rana Alnashwan Samia Allaoua Chelloug 《Computers, Materials & Continua》 2025年第2期2637-2664,共28页
A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built... A basic procedure for transforming readable data into encoded forms is encryption, which ensures security when the right decryption keys are used. Hadoop is susceptible to possible cyber-attacks because it lacks built-in security measures, even though it can effectively handle and store enormous datasets using the Hadoop Distributed File System (HDFS). The increasing number of data breaches emphasizes how urgently creative encryption techniques are needed in cloud-based big data settings. This paper presents Adaptive Attribute-Based Honey Encryption (AABHE), a state-of-the-art technique that combines honey encryption with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to provide improved data security. Even if intercepted, AABHE makes sure that sensitive data cannot be accessed by unauthorized parties. With a focus on protecting huge files in HDFS, the suggested approach achieves 98% security robustness and 95% encryption efficiency, outperforming other encryption methods including Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Key-Policy Attribute-Based Encryption (KB-ABE), and Advanced Encryption Standard combined with Attribute-Based Encryption (AES+ABE). By fixing Hadoop’s security flaws, AABHE fortifies its protections against data breaches and enhances Hadoop’s dependability as a platform for processing and storing massive amounts of data. 展开更多
关键词 CYBERSECURITY data security cloud storage hadoop encryption and decryption privacy protection attribute-based honey encryption
在线阅读 下载PDF
Reconfigurable origami chiral response for holographic imaging and information encryption
15
作者 Zhibiao Zhu Yongfeng Li +4 位作者 Jiafu Wang Ze Qin Lixin Jiang Yang Chen Shaobo Qu 《Opto-Electronic Science》 2025年第4期1-11,共11页
With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasu... With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption. 展开更多
关键词 ORIGAMI RECONFIGURABLE chiral response holographic imaging information encryption
在线阅读 下载PDF
Homomorphic Encryption for Machine Learning Applications with CKKS Algorithms:A Survey of Developments and Applications
16
作者 Lingling Wu Xu An Wang +7 位作者 Jiasen Liu Yunxuan Su Zheng Tu Wenhao Liu Haibo Lei Dianhua Tang Yunfei Cao Jianping Zhang 《Computers, Materials & Continua》 2025年第10期89-119,共31页
Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(M... Due to the rapid advancement of information technology,data has emerged as the core resource driving decision-making and innovation across all industries.As the foundation of artificial intelligence,machine learning(ML)has expanded its applications into intelligent recommendation systems,autonomous driving,medical diagnosis,and financial risk assessment.However,it relies on massive datasets,which contain sensitive personal information.Consequently,Privacy-Preserving Machine Learning(PPML)has become a critical research direction.To address the challenges of efficiency and accuracy in encrypted data computation within PPML,Homomorphic Encryption(HE)technology is a crucial solution,owing to its capability to facilitate computations on encrypted data.However,the integration of machine learning and homomorphic encryption technologies faces multiple challenges.Against this backdrop,this paper reviews homomorphic encryption technologies,with a focus on the advantages of the Cheon-Kim-Kim-Song(CKKS)algorithm in supporting approximate floating-point computations.This paper reviews the development of three machine learning techniques:K-nearest neighbors(KNN),K-means clustering,and face recognition-in integration with homomorphic encryption.It proposes feasible schemes for typical scenarios,summarizes limitations and future optimization directions.Additionally,it presents a systematic exploration of the integration of homomorphic encryption and machine learning from the essence of the technology,application implementation,performance trade-offs,technological convergence and future pathways to advance technological development. 展开更多
关键词 Homomorphic encryption machine learning CKKS PPML
在线阅读 下载PDF
A luminescent folded S-shaped high-nuclearity Eu_(19)-oxo-cluster embedded polyoxoniobate for information encryption
17
作者 Wen-Jun Xia Yong-Jiang Wang +4 位作者 Yun-Fei Cao Cai Sun Xin-Xiong Li Yan-Qiong Sun Shou-Tian Zheng 《Chinese Chemical Letters》 2025年第2期498-502,共5页
Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the ... Ln-containing polyoxoniobates(PONbs)have appealing applications in luminescence,information encryption and magnetic fields,but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln^(3+)ions in alkaline environments.In this paper,we are able to integrate CO_(3)^(2-)and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu_(19)-embedded PONb H_(49)K_(16)Na_(13)(H_(2)O)_(63)[Eu_(21)O_(2)(OH)_(7)(H_(2)O)_(5)(Nb_(7)O_(22))_(10)(Nb_(2)O_(6))_(2)(CO_(3))_(18)]·91H_(2)O(1),which contains the highest nuclearity Eu-O clusters and the largest number of Eu^(3+)ions among PONbs.In addition,the film that was prepared by mixing 1 with gelatin and glycerol,exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach.This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption. 展开更多
关键词 POLYOXONIOBATE LANTHANIDE Luminescence Information encryption Acid alkali stimulation
原文传递
Secure Medical Image Transmission Using Chaotic Encryption and Blockchain-Based Integrity Verification
18
作者 Rim Amdouni Mahdi Madani +2 位作者 Mohamed Ali Hajjaji El Bay Bourennane Mohamed Atri 《Computers, Materials & Continua》 2025年第9期5527-5553,共27页
Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blo... Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector.In the context of security,this paper proposes a novel encryption algorithm that integrates Blockchain technology,aiming to improve the security and privacy of transmitted data.The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps:The logistic Map,the Tent Map,and the Henon Map used to generate three encryption keys.The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.Furthermore,the integration of a Blockchain-based solution for securing data transmission and communication between nodes and authenticating the encrypted medical image’s authenticity adds a layer of security to our proposed method.Our proposed cryptosystem is divided into two principal modules presented as a pseudo-random number generator(PRNG)used for key generation and an encryption and decryption system based on the properties of confusion and diffusion.The security analysis and experimental tests for the proposed algorithm show that the average value of the information entropy of the encrypted images is 7.9993,the Number of Pixels Change Rate(NPCR)values are over 99.5%and the Unified Average Changing Intensity(UACI)values are greater than 33%.These results prove the strength of our proposed approach,demonstrating that it can significantly enhance the security of encrypted images. 展开更多
关键词 Medical image encryption chaotic maps blockchain substitution-Box security INTEGRITY
在线阅读 下载PDF
A Fully Homomorphic Encryption Scheme Suitable for Ciphertext Retrieval
19
作者 Ronglei Hu ChuceHe +3 位作者 Sihui Liu Dong Yao Xiuying Li Xiaoyi Duan 《Computers, Materials & Continua》 2025年第7期937-956,共20页
Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To ... Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To address these problems,this paper proposes an enhanced Fully Homomorphic Encryption(FHE)algorithm based on an improved DGHV algorithm,coupled with an optimized ciphertext retrieval scheme.Our specific contributions are outlined as follows:First,we employ an authorization code to verify the user’s retrieval authority and perform hierarchical access control on cloud storage data.Second,a triple-key encryption mechanism,which separates the data encryption key,retrieval authorization key,and retrieval key,is designed.Different keys are provided to different entities to run corresponding system functions.The key separation architecture proves particularly advantageous in multi-verifier coexistence scenarios,environments involving untrusted third-party retrieval services.Finally,the enhanced DGHV-based retrieval mechanism extends conventional functionality by enabling multi-keyword queries with similarity-ranked results,thereby significantly improving both the functionality and usability of the FHE system. 展开更多
关键词 Cloud storage homomorphic encryption ciphertext retrieval identity authentication
在线阅读 下载PDF
Detection of False Data Injection Attacks:A Protected Federated Deep Learning Based on Encryption Mechanism
20
作者 Chenxin Lin Qun Zhou +3 位作者 Zhan Wang Ximing Fan Yaochang Xu Yijia Xu 《Computers, Materials & Continua》 2025年第9期5859-5877,共19页
False Data Injection Attack(FDIA),a disruptive cyber threat,is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems,leading to system unr... False Data Injection Attack(FDIA),a disruptive cyber threat,is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems,leading to system unreliability,data integrity loss and operational vulnerability exposure.Given its widespread harm and impact,conducting in-depth research on FDIA detection is vitally important.This paper innovatively introduces a FDIA detection scheme:A Protected Federated Deep Learning(ProFed),which leverages Federated Averaging algorithm(FedAvg)as a foundational framework to fortify data security,harnesses pre-trained enhanced spatial-temporal graph neural networks(STGNN)to perform localized model training and integrates the Cheon-Kim-Kim-Song(CKKS)homomorphic encryption system to secure sensitive information.Simulation tests on IEEE 14-bus and IEEE 118-bus systems demonstrate that our proposed method outperforms other state-of-the-art detection methods across all evaluation metrics,with peak improvements reaching up to 35%. 展开更多
关键词 Smart grid FDIA federated learning STGNN CKKS homomorphic encryption
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部