The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functiona...The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functionality. These include mitigating interference from magnetic fields and vibrations, which are critical for maintaining the precision and accuracy of the instruments used. This study aims to offer enhanced project management strategies and detailed construction solutions that address the environmental and technical needs specific to electron microscopy labs, thereby facilitating effective lab operations and extending the lifecycle of high-end precision instruments. Case studies of existing laboratory constructions, onsite investigations, and comprehensive reviews of the technical and environmental requirements provide the basis for a best practice for constructing sophisticated electron microscopy labs. The approach integrates both pre-construction planning and post-construction adjustments to create optimal operational environments. The findings suggest that successful lab constructions are those that incorporate thorough onsite assessments, strategic location choices, and the use of advanced construction materials and techniques specifically designed to counteract environmental challenges like magnetic and vibration interferences. Actionable guidelines for both planning and executing the construction of electron microscope labs highlighted in this tutorial are intended as an important resource to troubleshoot or upgrade existing lab facilities and to consult in preparation of future lab construction projects.展开更多
Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before...Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.展开更多
[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild an...[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.展开更多
[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron micro...[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron microscope, and its morphological structure was confmned under optical microscope. [ Resuit]The nematode specimens fixed by glutaraldehyde and osmium tetroxide and prepared by critical point drying were unmodified and unshrinkable with clear mor- phological structure, which could be scanned very well by scanning electron microscope. [ Conclusion ] The study provided reference for study and control of H. digonicus.展开更多
Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important ...Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important for us to investigate the relation of the chalkiness formation and the development of endosperm structure and starch granule of different rice varieties. Here,we have investigated the chalkiness characters such as chalkiness rate,chalkiness degree and chalkiness area in 15 japonica rice varieties from southern Henan. Furthermore,the endosperm structure and starch granules of rice grain were also observed with scanning electron microscope. The results showed that the 15 japonica varieties have a significantly linear relationship between the chalkiness rate and chalkiness degree. Among the varieties,the biggest difference is the chalkiness rate,the second is the chalkiness area,and the last is the chalkiness degree. Moreover,there is a certain correlation between the distribution of starch granules,the arrangement of endosperm cells and the occurrence of grain chalkiness in the different rice varieties. For the same variety,the starch granules of chalky and non-chalky grains have obvious difference,while the starch granules from the transparent part of chalky rice and non-chalky rice do not have significant difference. The results would provide useful references for the improvement of grain quality in rice.展开更多
In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output...In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output data acquisition(DAQ)board is used to acquire signals originally being sent to an analog display,and then convert the signals into a digital image.Two output channels are used for raster scan of the horizontal and verticle axes of the image buffer,while one input channel is used to read the brightness signals at various coordinate points.Synchronous method is used to maximize the DAQ speed.Finally,the digitally buffered images are read out to display and saved in a hard drive.The hardware and software designs of this work are explained in great detail,which can serve as a very good example for fast synchronous DAQ,advanced virtual instrument design and structural driver programming with LabVIEW.展开更多
Specimens of Mugil soiuy were collected from the coastal waters of Bohai Sea in Tianjin. The gillfilaments were cut with fine scissors and soaked for 24h in a fixative consisting of 2.5% glutaralde-hyde in 0.1 mol lph...Specimens of Mugil soiuy were collected from the coastal waters of Bohai Sea in Tianjin. The gillfilaments were cut with fine scissors and soaked for 24h in a fixative consisting of 2.5% glutaralde-hyde in 0.1 mol lphosporic acid buffer. After three washes in a buffer solution the tissue was fixedin a mixture of 1% osmium tetraoxide at 4℃ for 1h. The tissue was dehydrated in graded ethandethanols and dried. The tissue was examined and photographed with an SEM at an accelerating voltage展开更多
Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs fur...Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay.展开更多
It is well known that β-BBO is a new type nonlinear optical crystal discovered in our institute and now β-BBO is widely used in the fields of laser and nonlinear optics. However, there are still some inclusions in ...It is well known that β-BBO is a new type nonlinear optical crystal discovered in our institute and now β-BBO is widely used in the fields of laser and nonlinear optics. However, there are still some inclusions in β-BBO crystal grown by flux method. Using AEM technique, we have studied the shape, composition and structure of inclusions which is very helpful to the explanation of the formation of inclusions.展开更多
SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can...SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can be used as an effective strategy for surface engineering,allowing for structure modulation or design,property tuning and application exploration.However,there is currently a gap in understanding the relationship between the oxidation behavior of SnS,the structure of its oxidized surface,and the dependence on oxidation temperature.In this study,we systematically investigated the evolution of SnS surfaces under thermal oxidation using electron microscopy.The microstructure evolution(e.g.,surface structures,phases,defects,and interface)of SnS during high-temperature oxidation has been fully characterized and studied based on cross-sectional samples.Various surface heterostructures were constructed,including SnO_(2)/SnS,SnO_(2)/SnS_(2)/SnS,and SnO_(2)/Sn_(2)S_(3)/SnS,offering significant potential for the surface functionalization of SnS-based systems.Accordingly,oxidation mechanisms at different stages were elucidated based on the detailed and clear picture of microstructures.This research not only deepens our understanding of the fundamental science of SnS oxidation but also provides valuable insights for preventing and developing surface oxidation engineering in SnS and other van der Waals chalcogenides/materials.展开更多
A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamb...A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples.Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices.This paper presents a comprehensive survey of recent advances in nanorobotic manipulation,including the development of nanomanipulation platforms,tools,changeable toolboxes,sensing units,control strategies,electron beam-induced deposition approaches,automation techniques,and nanomanipulation-enabled applications and discoveries.The limitations of the existing technologies and prospects for new technologies are also discussed.展开更多
This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation o...This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation of the rough endoplasmic reticulum (RER) took place, the polyribosomes disaggregated. And then, the Golgi complex and the endoplasmic reticulum dilated. The cytoplasmic matrix presented and inhomogeneous apperance. Finally, the biomembrane loosed and fractured.The cell nuclei presented the karyorrhexis.展开更多
Background:Fingermark is an individual’s primary identification source.It is helpful in determining individuals involved in illegal activities and is frequently encountered in clandestine laboratories.During forensic...Background:Fingermark is an individual’s primary identification source.It is helpful in determining individuals involved in illegal activities and is frequently encountered in clandestine laboratories.During forensic investigation,the critical question to be answered is whether a fingermark was left on a surface before or after the initiation of an unlawful activity.Aims and Objectives:This study aimed to investigate the visualization of methamphetamine-contaminated fingermarks on glass surfaces and estimate the immediacy of their depositions.Materials and Methods:In this study,the prior-deposition contaminated fingermarks,i.e.,fingermarks deposited a surface priorly contaminated by methamphetamine,and the postdeposition contaminated fingermarks,i.e.,fingermarks deposited on a clean surface but subsequently contaminated with methamphetamine were visualized and compared using Field Emission Scanning Electron Microscope(FESEM).Results:Under FESEM,the latent fingermarks and the crystalline structure of methamphetamine were clearly visualized.The postdeposition contaminated fingermarks appeared in smudge conditions in all the three replicate samples,where the ridge and nonridge areas could not be well-distinguished.On the contrary,the prior-deposition contaminated fingermark demonstrated distinct separations between ridges and nonridges.However,the application of fingerprint powders reduced the possibility to determine the immediacy of deposition.Conclusion:To conclude,both prior-deposition contaminated fingermarks and postdeposition contaminated fingermarks can be discriminated,providing information on the instance when a fingermark was left on a surface.展开更多
Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herei...Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herein,at the atomic scale,the localized phonons of individual dislocations at a Si/Ge interface are measured via monochromated electron energy loss spectroscopy in a scanning transmission electron microscope.These modes are then correlated with the local microstructure,further revealing the dislocation effects on the local thermal transport properties.The dislocation causes a phonon redshift of several milli-electron-volts within about two to four nanometers of the core,where both the strain field and Ge segregation play roles.With the presence of dislocation,the local interfacial thermal conductance can be either enhanced or reduced,depending on the complex interaction and competition between lattice disorder(dislocation)and element disorder(heterointerface mixing and Ge-segregation)at the interface.These findings provide valuable insights to improve the thermal properties of thermoelectric generators and thermal management systems through proper defect engineering.展开更多
BACKGROUND: Primary intrahepatic cholelithiasis is usually combined with biliary tract infection. This research was undertaken to investigate the relationship between intrahepatic stones and biliary tract infection. M...BACKGROUND: Primary intrahepatic cholelithiasis is usually combined with biliary tract infection. This research was undertaken to investigate the relationship between intrahepatic stones and biliary tract infection. METHODS: Thirty-five bile samples and 30 stones specimens were cultured for bacteria and 12 stones specimens were examined with a scan electron microscope (SEM) or a transmission electron microscope (TEM). RESULT: 94.2% bile samples and 96.7% stones specimens were positive in bacteria culture. Bacteria were found in stones under SEM and TEM. CONCLUSION: Bacteria in stones are associated with the infection of the biliary tract.展开更多
Graphene,a two-dimensional material with atomic thickness,holds significant importance in advancing the existing theories of solid mechanics.However,as an intersection of multiple scales,it poses challenges to experim...Graphene,a two-dimensional material with atomic thickness,holds significant importance in advancing the existing theories of solid mechanics.However,as an intersection of multiple scales,it poses challenges to experimental measurements of its mechanical behaviors.This review comprehensively discusses the recent achievements in experimental studies on the mechanics of graphene,focusing on sample preparation,loading design,and measurement techniques.Moreover,personal perspectives on the future development in this field are presented,aiming to provide insights and inspiration for researchers engaged in related studies.展开更多
Aerosol category and its physicochemical properties are key factors influencing its climate and environmental effects.To further enhance our understanding of aerosols in the Himalayas-Tibetan Plateau region,atmospheri...Aerosol category and its physicochemical properties are key factors influencing its climate and environmental effects.To further enhance our understanding of aerosols in the Himalayas-Tibetan Plateau region,atmospheric particulate matter samples were collected at three different altitudes on Mount Qomolangma(Everest).Using an automated scanning electron microscope system,the composition,size,and morphology of 52,349 particles were analyzed.The average mass concentrations of PM_(1),PM_(2.5),and PM_(10)were 0.678,5.054,and 16.698μg/m^(3),respectively.Aluminosilicate particles dominated the samples,accounting for 71.5%to 82.8%of PM_(10)mass and 34.7%to 62.4%of the particle number.Quartz particles,carbonate particles,metal oxides,and sulfates were also observed at different periods.Carbonaceous particles made up a significant portion of aerosols,comprising 2.1%to 9.7%of PM_(10)mass and 10.4%to 45.4%of particle number,with their concentration showing an upward trend with altitude.Small amounts of tar ball particles and fly ash particles were also observed,providing direct evidence of anthropogenic influences on high-altitude regions,even at altitudes exceeding 6000 m.The size distribution and abundance of different particle categories were closely related to the transport trajectories of air masses.The morphology of different particle categories varied,with fly ash particles mainly spherical and carbonaceous particles exhibiting higher irregularity.展开更多
The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engin...The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.展开更多
Exploring advanced techniques capable of probing nanometric acoustic waves in nanostructures is critically important for the development of miniaturized acoustic devices.In this study,we probe the optically-excited ac...Exploring advanced techniques capable of probing nanometric acoustic waves in nanostructures is critically important for the development of miniaturized acoustic devices.In this study,we probe the optically-excited acoustic waves in a single silicon nanowire(NW)using the time-resolved(tr-)high-order Laue-zone(HOLZ)lines under convergent-beam electron diffraction(CBED)conditions in an ultrafast transmission electron microscope(UTEM).We devise an experimental scheme to obtain tr-HOLZ lines under off-zone-axis CBED conditions.We also propose a geometric description of HOLZ line formation and use this alternative description to quantitatively evaluate the dynamics of optically-excited silicon NW.Using part of the deformation gradient tensor,our simulations of the dynamics of Si NW reproduce the experimental results.We further discuss the feasibility of a full retrieval of the deformation gradient tensor by using a set of HOLZ lines from three zone axes.Our findings illustrate a strategy for the quantitative access to dynamical acoustic waves optically excited in micro-and nano-structures using UTEM.展开更多
AIM: To evaluate the effect of propolis administration on the healing of colon anastomosis with light and transmission electron microscopes. METHODS: Forty-eight Wistar-AIbino female rats were divided into two group...AIM: To evaluate the effect of propolis administration on the healing of colon anastomosis with light and transmission electron microscopes. METHODS: Forty-eight Wistar-AIbino female rats were divided into two groups and had colon resection and anastomosis. In group Ⅰ, rats were fed with standard rat chow pre- and postoperatively. The rats in group Ⅱ were fed with standard rat chow and began receiving oral supplementation of propolis 100 mg/kg per day beginning 7 d before the operation and continued until they were sacrificed. Rats were sacrificed 1, 3, 7 and 14 d after operation, and anastomotic bursting pressures measured. After the resection of anastomotic segments, histopathological examination was performed with light and transmission electron microscopes by two blinded histologists and photographed. RESULTS: The colonic bursting pressures of the propolis group were statistically significantly better than the control group. UItrastructural histopathological analysis of the colon anastomosis revealed that propotis accelerated the phases of the healing process and stimulated mature granulation tissue formation and collagen synthesis of fibroblasts. CONCLUSION: Bursting pressure measurements and ultra structural histopathological evaluation showed that administration of propolis accelerated the healing of colon anastomosis following surgical excision.展开更多
文摘The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functionality. These include mitigating interference from magnetic fields and vibrations, which are critical for maintaining the precision and accuracy of the instruments used. This study aims to offer enhanced project management strategies and detailed construction solutions that address the environmental and technical needs specific to electron microscopy labs, thereby facilitating effective lab operations and extending the lifecycle of high-end precision instruments. Case studies of existing laboratory constructions, onsite investigations, and comprehensive reviews of the technical and environmental requirements provide the basis for a best practice for constructing sophisticated electron microscopy labs. The approach integrates both pre-construction planning and post-construction adjustments to create optimal operational environments. The findings suggest that successful lab constructions are those that incorporate thorough onsite assessments, strategic location choices, and the use of advanced construction materials and techniques specifically designed to counteract environmental challenges like magnetic and vibration interferences. Actionable guidelines for both planning and executing the construction of electron microscope labs highlighted in this tutorial are intended as an important resource to troubleshoot or upgrade existing lab facilities and to consult in preparation of future lab construction projects.
文摘Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.
文摘[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.
文摘[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron microscope, and its morphological structure was confmned under optical microscope. [ Resuit]The nematode specimens fixed by glutaraldehyde and osmium tetroxide and prepared by critical point drying were unmodified and unshrinkable with clear mor- phological structure, which could be scanned very well by scanning electron microscope. [ Conclusion ] The study provided reference for study and control of H. digonicus.
基金Supported by Key Project of Science and Technology in Henan Province(152102110100,152102110036)National Natural Science Foundation of China(U1604110,U1404319,31270727,31600992)+3 种基金Nanhu Scholars Program for Young Scholars of XYNU(2016056)Major Science and Technology Project in Henan Province(121100110200)Students Scientific Research Fund of Xinyang Normal University(2015-DXS-158)Fund of Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains(2016020)
文摘Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important for us to investigate the relation of the chalkiness formation and the development of endosperm structure and starch granule of different rice varieties. Here,we have investigated the chalkiness characters such as chalkiness rate,chalkiness degree and chalkiness area in 15 japonica rice varieties from southern Henan. Furthermore,the endosperm structure and starch granules of rice grain were also observed with scanning electron microscope. The results showed that the 15 japonica varieties have a significantly linear relationship between the chalkiness rate and chalkiness degree. Among the varieties,the biggest difference is the chalkiness rate,the second is the chalkiness area,and the last is the chalkiness degree. Moreover,there is a certain correlation between the distribution of starch granules,the arrangement of endosperm cells and the occurrence of grain chalkiness in the different rice varieties. For the same variety,the starch granules of chalky and non-chalky grains have obvious difference,while the starch granules from the transparent part of chalky rice and non-chalky rice do not have significant difference. The results would provide useful references for the improvement of grain quality in rice.
文摘In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output data acquisition(DAQ)board is used to acquire signals originally being sent to an analog display,and then convert the signals into a digital image.Two output channels are used for raster scan of the horizontal and verticle axes of the image buffer,while one input channel is used to read the brightness signals at various coordinate points.Synchronous method is used to maximize the DAQ speed.Finally,the digitally buffered images are read out to display and saved in a hard drive.The hardware and software designs of this work are explained in great detail,which can serve as a very good example for fast synchronous DAQ,advanced virtual instrument design and structural driver programming with LabVIEW.
文摘Specimens of Mugil soiuy were collected from the coastal waters of Bohai Sea in Tianjin. The gillfilaments were cut with fine scissors and soaked for 24h in a fixative consisting of 2.5% glutaralde-hyde in 0.1 mol lphosporic acid buffer. After three washes in a buffer solution the tissue was fixedin a mixture of 1% osmium tetraoxide at 4℃ for 1h. The tissue was dehydrated in graded ethandethanols and dried. The tissue was examined and photographed with an SEM at an accelerating voltage
基金finically supported by the National Key Research and Development Program of China (Grant No. 2016YFB0100100)Strategic Priority Research Program of Chinese Academy of Sciences (CAS, Grant No. XDA09010101)Ningbo Key Science and Technology Projects "Industrial Application Development of Graphene" (Grant No. 2014S10008)
文摘Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay.
文摘It is well known that β-BBO is a new type nonlinear optical crystal discovered in our institute and now β-BBO is widely used in the fields of laser and nonlinear optics. However, there are still some inclusions in β-BBO crystal grown by flux method. Using AEM technique, we have studied the shape, composition and structure of inclusions which is very helpful to the explanation of the formation of inclusions.
基金financially supported by the National Natural Science Foundation of China(Nos.11904039,52125103,52071041,U21A2054 and 12104071)。
文摘SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can be used as an effective strategy for surface engineering,allowing for structure modulation or design,property tuning and application exploration.However,there is currently a gap in understanding the relationship between the oxidation behavior of SnS,the structure of its oxidized surface,and the dependence on oxidation temperature.In this study,we systematically investigated the evolution of SnS surfaces under thermal oxidation using electron microscopy.The microstructure evolution(e.g.,surface structures,phases,defects,and interface)of SnS during high-temperature oxidation has been fully characterized and studied based on cross-sectional samples.Various surface heterostructures were constructed,including SnO_(2)/SnS,SnO_(2)/SnS_(2)/SnS,and SnO_(2)/Sn_(2)S_(3)/SnS,offering significant potential for the surface functionalization of SnS-based systems.Accordingly,oxidation mechanisms at different stages were elucidated based on the detailed and clear picture of microstructures.This research not only deepens our understanding of the fundamental science of SnS oxidation but also provides valuable insights for preventing and developing surface oxidation engineering in SnS and other van der Waals chalcogenides/materials.
基金This study was supported by the Natural Sciences and Engineering Research Council of Canada,the Canada Research Chairs Program,and the Ontario Ministry of Research and Innovation via an ORF-RE grant.
文摘A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples.Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices.This paper presents a comprehensive survey of recent advances in nanorobotic manipulation,including the development of nanomanipulation platforms,tools,changeable toolboxes,sensing units,control strategies,electron beam-induced deposition approaches,automation techniques,and nanomanipulation-enabled applications and discoveries.The limitations of the existing technologies and prospects for new technologies are also discussed.
文摘This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation of the rough endoplasmic reticulum (RER) took place, the polyribosomes disaggregated. And then, the Golgi complex and the endoplasmic reticulum dilated. The cytoplasmic matrix presented and inhomogeneous apperance. Finally, the biomembrane loosed and fractured.The cell nuclei presented the karyorrhexis.
基金Universiti Sains Malaysia RUI grant(1001/PPSK/8012236).
文摘Background:Fingermark is an individual’s primary identification source.It is helpful in determining individuals involved in illegal activities and is frequently encountered in clandestine laboratories.During forensic investigation,the critical question to be answered is whether a fingermark was left on a surface before or after the initiation of an unlawful activity.Aims and Objectives:This study aimed to investigate the visualization of methamphetamine-contaminated fingermarks on glass surfaces and estimate the immediacy of their depositions.Materials and Methods:In this study,the prior-deposition contaminated fingermarks,i.e.,fingermarks deposited a surface priorly contaminated by methamphetamine,and the postdeposition contaminated fingermarks,i.e.,fingermarks deposited on a clean surface but subsequently contaminated with methamphetamine were visualized and compared using Field Emission Scanning Electron Microscope(FESEM).Results:Under FESEM,the latent fingermarks and the crystalline structure of methamphetamine were clearly visualized.The postdeposition contaminated fingermarks appeared in smudge conditions in all the three replicate samples,where the ridge and nonridge areas could not be well-distinguished.On the contrary,the prior-deposition contaminated fingermark demonstrated distinct separations between ridges and nonridges.However,the application of fingerprint powders reduced the possibility to determine the immediacy of deposition.Conclusion:To conclude,both prior-deposition contaminated fingermarks and postdeposition contaminated fingermarks can be discriminated,providing information on the instance when a fingermark was left on a surface.
基金supported by the National Natural Science Foundation of China(Grant No.52125307)the National Key R&D Program of China(Grant No.2021YFB3501500)the support from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘Nanoscale defects such as dislocations have a significant impact on the phonon thermal transport properties in non-metallic materials.To unravel these effects,an understanding of defect phonon modes is essential.Herein,at the atomic scale,the localized phonons of individual dislocations at a Si/Ge interface are measured via monochromated electron energy loss spectroscopy in a scanning transmission electron microscope.These modes are then correlated with the local microstructure,further revealing the dislocation effects on the local thermal transport properties.The dislocation causes a phonon redshift of several milli-electron-volts within about two to four nanometers of the core,where both the strain field and Ge segregation play roles.With the presence of dislocation,the local interfacial thermal conductance can be either enhanced or reduced,depending on the complex interaction and competition between lattice disorder(dislocation)and element disorder(heterointerface mixing and Ge-segregation)at the interface.These findings provide valuable insights to improve the thermal properties of thermoelectric generators and thermal management systems through proper defect engineering.
文摘BACKGROUND: Primary intrahepatic cholelithiasis is usually combined with biliary tract infection. This research was undertaken to investigate the relationship between intrahepatic stones and biliary tract infection. METHODS: Thirty-five bile samples and 30 stones specimens were cultured for bacteria and 12 stones specimens were examined with a scan electron microscope (SEM) or a transmission electron microscope (TEM). RESULT: 94.2% bile samples and 96.7% stones specimens were positive in bacteria culture. Bacteria were found in stones under SEM and TEM. CONCLUSION: Bacteria in stones are associated with the infection of the biliary tract.
基金supported by the specialized research projects of Huanjiang Laboratory.
文摘Graphene,a two-dimensional material with atomic thickness,holds significant importance in advancing the existing theories of solid mechanics.However,as an intersection of multiple scales,it poses challenges to experimental measurements of its mechanical behaviors.This review comprehensively discusses the recent achievements in experimental studies on the mechanics of graphene,focusing on sample preparation,loading design,and measurement techniques.Moreover,personal perspectives on the future development in this field are presented,aiming to provide insights and inspiration for researchers engaged in related studies.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(No.2019QZKK0106)the Basic Research Fund of CAMS(Nos.2023Z004 and 2023Z015).
文摘Aerosol category and its physicochemical properties are key factors influencing its climate and environmental effects.To further enhance our understanding of aerosols in the Himalayas-Tibetan Plateau region,atmospheric particulate matter samples were collected at three different altitudes on Mount Qomolangma(Everest).Using an automated scanning electron microscope system,the composition,size,and morphology of 52,349 particles were analyzed.The average mass concentrations of PM_(1),PM_(2.5),and PM_(10)were 0.678,5.054,and 16.698μg/m^(3),respectively.Aluminosilicate particles dominated the samples,accounting for 71.5%to 82.8%of PM_(10)mass and 34.7%to 62.4%of the particle number.Quartz particles,carbonate particles,metal oxides,and sulfates were also observed at different periods.Carbonaceous particles made up a significant portion of aerosols,comprising 2.1%to 9.7%of PM_(10)mass and 10.4%to 45.4%of particle number,with their concentration showing an upward trend with altitude.Small amounts of tar ball particles and fly ash particles were also observed,providing direct evidence of anthropogenic influences on high-altitude regions,even at altitudes exceeding 6000 m.The size distribution and abundance of different particle categories were closely related to the transport trajectories of air masses.The morphology of different particle categories varied,with fly ash particles mainly spherical and carbonaceous particles exhibiting higher irregularity.
基金supported by the Postgraduate Education Reform and Quality Improvement Project of Henan Province,China(Grant No.YJS2023AL004)the Graduate Innovation Project of North China University of Water Resources and Electric Power(Grant No.NCWUYC-202315069)the China National Scholarship Fund organized by the China Scholarship Council(Grant No.202208410337).
文摘The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.
基金supported by the Guangxi Natural Science Foundation(Grant No.2024GXNSFDA010014)the National Natural Science Foundation of China(Grant Nos.12364018 and U22A6005)+1 种基金the Guangxi Science and Technology Major Program(Grant No.AA23073019)the Innovation Project of Guangxi Graduate Education(Grant Nos.YCBZ2022049 and YCBZ2023015)。
文摘Exploring advanced techniques capable of probing nanometric acoustic waves in nanostructures is critically important for the development of miniaturized acoustic devices.In this study,we probe the optically-excited acoustic waves in a single silicon nanowire(NW)using the time-resolved(tr-)high-order Laue-zone(HOLZ)lines under convergent-beam electron diffraction(CBED)conditions in an ultrafast transmission electron microscope(UTEM).We devise an experimental scheme to obtain tr-HOLZ lines under off-zone-axis CBED conditions.We also propose a geometric description of HOLZ line formation and use this alternative description to quantitatively evaluate the dynamics of optically-excited silicon NW.Using part of the deformation gradient tensor,our simulations of the dynamics of Si NW reproduce the experimental results.We further discuss the feasibility of a full retrieval of the deformation gradient tensor by using a set of HOLZ lines from three zone axes.Our findings illustrate a strategy for the quantitative access to dynamical acoustic waves optically excited in micro-and nano-structures using UTEM.
文摘AIM: To evaluate the effect of propolis administration on the healing of colon anastomosis with light and transmission electron microscopes. METHODS: Forty-eight Wistar-AIbino female rats were divided into two groups and had colon resection and anastomosis. In group Ⅰ, rats were fed with standard rat chow pre- and postoperatively. The rats in group Ⅱ were fed with standard rat chow and began receiving oral supplementation of propolis 100 mg/kg per day beginning 7 d before the operation and continued until they were sacrificed. Rats were sacrificed 1, 3, 7 and 14 d after operation, and anastomotic bursting pressures measured. After the resection of anastomotic segments, histopathological examination was performed with light and transmission electron microscopes by two blinded histologists and photographed. RESULTS: The colonic bursting pressures of the propolis group were statistically significantly better than the control group. UItrastructural histopathological analysis of the colon anastomosis revealed that propotis accelerated the phases of the healing process and stimulated mature granulation tissue formation and collagen synthesis of fibroblasts. CONCLUSION: Bursting pressure measurements and ultra structural histopathological evaluation showed that administration of propolis accelerated the healing of colon anastomosis following surgical excision.