期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
Multistage microcellular waterborne polyurethane composite with optionally low-reflection behavior for ultra-efficient electromagnetic interference shielding 被引量:3
1
作者 Jianming Yang Hu Wang +4 位作者 Hexin Zhang Peng Lin Hong Gao Youyi Xia Xia Liao 《Journal of Materials Science & Technology》 2025年第5期132-140,共9页
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif... Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites. 展开更多
关键词 electromagnetic interference shielding Supercritical carbon dioxide(ScCO_(2))foaming Low reflectivity Multilayered structure MICROCELLULAR
原文传递
Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth 被引量:1
2
作者 Yu-long Liu Ting-yu Zhu +5 位作者 Qin Wang Zi-jie Huang De-xiang Sun Jing-hui Yang Xiao-dong Qi Yong Wang 《Nano-Micro Letters》 2025年第4期399-418,共20页
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal... As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields. 展开更多
关键词 Polypyrrole nanowire arrays Hierarchical foam HYDROPHOBICITY Infrared stealth electromagnetic interference shielding
在线阅读 下载PDF
Multifunctional Nacre‑Like Nanocomposite Papers for Electromagnetic Interference Shielding via Heterocyclic Aramid/MXene Template‑Assisted In‑Situ Polypyrrole Assembly
3
作者 Jinhua Xiong Xu Zhao +6 位作者 Zonglin Liu He Chen Qian Yan Huanxin Lian Yunxiang Chen Qingyu Peng Xiaodong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期37-54,共18页
Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication,... Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication, and portable/wearable electronic equipment.In this work, a nacre-inspired multifunctional heterocyclic aramid(HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper withlarge-scale, high strength, super toughness, and excellent tolerance tocomplex conditions is fabricated through the strategy of HA/MXenehydrogel template-assisted in-situ assembly of PPy. Benefiting from the"brick-and-mortar" layered structure and the strong hydrogen-bondinginteractions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa),outstanding toughness (57.6 MJ m−3), exceptional foldability, and structural stability against ultrasonication. By using the template effect ofHA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly,the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dBat an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2g−1. In addition, the papers also have excellent applicationsin electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developinghigh-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management. 展开更多
关键词 MXene Remarkable mechanical properties Heterocyclic aramid electromagnetic interference shielding POLYPYRROLE Multifunctionality
在线阅读 下载PDF
Inter‑Skeleton Conductive Routes Tuning Multifunctional Conductive Foam for Electromagnetic Interference Shielding,Sensing and Thermal Management
4
作者 Xufeng Li Chunyan Chen +10 位作者 Zhenyang Li Peng Yi Haihan Zou Gao Deng Ming Fang Junzhe He Xin Sun Ronghai Yu Jianglan Shui Caofeng Pan Xiaofang Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期19-36,共18页
Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.Howev... Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.However,its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation.Here,an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression.Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton(denoted as AMLM-PM foam).Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films.Therefore,the resistance change of AMLM-PM reaches four orders of magnitude under compression.Moreover,the inter-skeleton conductive films can improve the mechanical strength of foam,prevent the leakage of liquid metal and increase the scattering area of EM wave.AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness,solving the problem of traditional CPFs upon compression.The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function. 展开更多
关键词 Inter-skeleton conductive films Conductive polymer foam Liquid metal electromagnetic interference shielding
在线阅读 下载PDF
Hierarchical Polyimide Nonwoven Fabric with Ultralow-Reflectivity Electromagnetic Interference Shielding and High-Temperature Resistant Infrared Stealth Performance
5
作者 Xinwei Tang Yezi Lu +7 位作者 Shuangshuang Li Mingyang Zhu Zixuan Wang Yan Li Zaiyin Hu Penglun Zheng Zicheng Wang Tianxi Liu 《Nano-Micro Letters》 2025年第4期111-129,共19页
Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,... Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,a hierarchical polyimide(PI)nonwoven fabric is fabricated by alkali treatment,in-situ growth of magnetic particles and"self-activated"electroless Ag plating process.Especially,the hierarchical impedance matching can be constructed by systematically assembling Fe_(3)O_(4)/Ag-loaded PI nonwoven fabric(PFA)and pure Ag-coated PI nonwoven fabric(PA),endowing it with an ultralowreflectivity EMI shielding performance.In addition,thermal insulation of fluffy three-dimensional(3D)space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance.More importantly,the strong bonding interaction between Fe_(3)O_(4),Ag,and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance.Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy,and inhibit external infrared detection. 展开更多
关键词 POLYIMIDE electromagnetic interference shielding Low reflectivity Infrared stealth Compatibility
在线阅读 下载PDF
Aramid Nanofiber/MXene‑Reinforced Polyelectrolyte Hydrogels for Absorption‑Dominated Electromagnetic Interference Shielding and Wearable Sensing
6
作者 Jinglun Guo Tianyi Zhang +6 位作者 Xiaoyu Hao Shuaijie Liu Yuxin Zou Jinjin Li Wei Wu Liming Chen Xuqing Liu 《Nano-Micro Letters》 2025年第11期219-235,共17页
Conductive hydrogels have garnered widespread attention as a versatile class of flexible electronics.Despite considerable advancements,current methodologies struggle to reconcile the fundamental trade-off between high... Conductive hydrogels have garnered widespread attention as a versatile class of flexible electronics.Despite considerable advancements,current methodologies struggle to reconcile the fundamental trade-off between high conductivity and effective absorption-dominated electromagnetic interference(EMI)shielding,as dictated by classical impedance matching theory.This study addresses these limitations by introducing a novel synthesis of aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels.Leveraging the unique properties of polyelectrolytes,this innovative approach enhances ionic conductivity and exploits the hydration effect of hydrophilic polar groups to induce the formation of intermediate water.This critical innovation facilitates polarization relaxation and rearrangement in response to electromagnetic fields,thereby significantly enhancing the EMI shielding effectiveness of hydrogels.The electromagnetic wave attenuation capacity of these hydrogels was thoroughly evaluated across both X-band and terahertz band frequencies,with further investigation into the impact of varying water content states-hydrated,dried,and frozen-on their electromagnetic properties.Moreover,the hydrogels exhibited promising capabilities beyond mere EMI shielding;they also served effectively as strain sensors for monitoring human motions,indicating their potential applicability in wearable electronics.This work provides a new approach to designing multifunctional hydrogels,advancing the integration of flexible,multifunctional materials in modern electronics,with potential applications in both EMI shielding and wearable technology. 展开更多
关键词 electromagnetic interference shielding Intermediate water Polyelectrolyte hydrogel Hydrogen bonding Strain sensor
在线阅读 下载PDF
Multifunctional Asymmetric Bilayer Aerogels for Highly Efficient Electromagnetic Interference Shielding with Ultrahigh Electromagnetic Wave Absorption
7
作者 Cheng‑Zhang Qi Peng Min +6 位作者 Xinfeng Zhou Meng Jin Xia Sun Jianjun Wu Yanjun Liu Hao‑Bin Zhang Zhong‑Zhen Yu 《Nano-Micro Letters》 2025年第11期680-697,共18页
Although multifunctional electromagnetic interference(EMI)shielding materials with ultrahigh electromagnetic wave absorption are highly required to solve increasingly serious electromagnetic radiation and pollution an... Although multifunctional electromagnetic interference(EMI)shielding materials with ultrahigh electromagnetic wave absorption are highly required to solve increasingly serious electromagnetic radiation and pollution and meet multi-scenario applications,EMI shielding materials usually cause a lot of reflection and have a single function.To realize the broadband absorption-dominated EMI shielding via absorption-reflection-reabsorption mechanisms and the interference cancelation effect,multifunctional asymmetric bilayer aerogels are designed by sequential printing of a MXene-graphene oxide(MG)layer with a MG emulsion ink and a conductive MXene layer with a MXene ink and subsequent freeze-drying for generating and solidifying numerous pores in the aerogels.The top MG layer of the asymmetric bilayer aerogel optimizes impedance matching and achieves re-absorption,while the bottom MXene layer enhances the reflection of the incident electromagnetic waves.As a result,the asymmetric bilayer aerogel achieves an average absorption coefficient of 0.95 in the X-band and shows the tunable absorption ability to electromagnetic wave in the ultrawide band from 8.2 to 40 GHz.Finite element simulations substantiate the effectiveness of the asymmetric bilayer aerogel for electromagnetic wave absorption.The multifunctional bilayer aerogels exhibit hydrophobicity,thermal insulation and Joule heating capacities and are efficient in solar-thermal/electric heating,infrared stealth,and clean-up of spilled oil. 展开更多
关键词 Multifunctional bilayer aerogels electromagnetic interference shielding MXene sheets Graphene oxide Infrared stealth and camouflage
在线阅读 下载PDF
Ultra-Broadband and Ultra-High Electromagnetic Interference Shielding Performance of Aligned and Compact MXene Films
8
作者 Weiqiang Huang Xuebin Liu +7 位作者 Yunfan Wang Jiyong Feng Junhua Huang Zhenxi Dai Shaodian Yang Songfeng Pei Jing Zhong Xuchun Gui 《Nano-Micro Letters》 2025年第10期184-196,共13页
With the rapid development of electronic detective techniques,there is an urgent need for broadband(from microwave to infrared)stealth of aerospace equipment.However,achieving effective broadband stealth primarily rel... With the rapid development of electronic detective techniques,there is an urgent need for broadband(from microwave to infrared)stealth of aerospace equipment.However,achieving effective broadband stealth primarily relies on the composite of multi-layer coatings of different materials,while realizing broadband stealth with a single material remains a significant challenge.Herein,we reported a highly compact MXene film with aligned nanosheets through a continuous centrifugal spraying strategy.The film exhibits an exceptional electromagnetic interference shielding effectiveness of 45 d B in gigahertz band(8.2-40 GHz)and 59 d B in terahertz band(0.2-1.6 THz)at a thickness of 2.25μm,owing to the high conductivity(1.03×10^(6)S m^(-1)).Moreover,exceptionally high specific shielding effectiveness of 1.545×10^(6)dB cm^(2)g^(-1)has been demonstrated by the film,which is the highest value reported for shielding films.Additionally,the film exhibits an ultra-low infrared emissivity of 0.1 in the wide-range infrared band(2.5-16.0μm),indicating its excellent infrared stealth performance for day-/nighttime outdoor environments.Moreover,the film demonstrates efficient electrothermal performance,including a high saturated temperature(over 120℃ at 1.0 V),a high heating rate(4.4℃s^(-1)at 1.0 V),and a stable and uniform heating distribution.Therefore,this work provides a promising strategy for protecting equipment from multispectral electromagnetic interference and inhibiting infrared detection. 展开更多
关键词 MXene Film electromagnetic interference shielding Infrared stealth Electrical heater
在线阅读 下载PDF
Liquid Metal Grid Patterned Thin Film Devices Toward Absorption‑Dominant and Strain‑Tunable Electromagnetic Interference Shielding 被引量:1
9
作者 Yuwen Wei Priyanuj Bhuyan +9 位作者 Suk Jin Kwon Sihyun Kim Yejin Bae Mukesh Singh Duy Thanh Tran Minjeong Ha Kwang‑Un Jeong Xing Ma Byeongjin Park Sungjune Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期541-553,共13页
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect... The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics. 展开更多
关键词 Absorption-dominant electromagnetic interference shielding Liquid metals Soft and stretchable electronics Thin film devices Tunable electromagnetic interference shielding
在线阅读 下载PDF
Recent progress in smart electromagnetic interference shielding materials 被引量:7
10
作者 Xin Hou Xue-Rong Feng +3 位作者 Ke Jiang Yu-Chen Zheng Jiang-Tao Liu Ming Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期256-271,共16页
With the rapid advancement of the intelligent era, intelligent electromagnetic interference (EMI) shielding devices are receiving more and more attention due to their advantages in environmental self-adaption response... With the rapid advancement of the intelligent era, intelligent electromagnetic interference (EMI) shielding devices are receiving more and more attention due to their advantages in environmental self-adaption response. Accordingly, appropriate EMI shielding materials are crucial to blocking harmful electromagnetic radiation and passing serviceable electromagnetic waves. Smart EMI shielding materials that can dynamically adjust their EMI shielding effectiveness (SE) in response to specific application requirements and environmental changes are extremely advantageous in both military and civil areas. To date, materials with adjustable EMI SE for various responses have been developed. This review pays special attention to smart materials with tunable EMI SE. The design strategies, mechanism and recent progress of smart EMI shielding materials are discussed together with different stimuli responses, including compression strain, tensile strain, chemical reagent, shape memory, phase transition and crossover angle change-induced responses. The review ends up to discuss challenges and perspectives for smart EMI shielding materials. 展开更多
关键词 electromagnetic interference shielding Smart materials Stimuli response electromagnetic adaption
原文传递
3D‑Printed Carbon‑Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics 被引量:6
11
作者 Shaohong Shi Yuheng Jiang +5 位作者 Hao Ren Siwen Deng Jianping Sun Fangchao Cheng Jingjing Jing Yinghong Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期87-101,共15页
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni... Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics. 展开更多
关键词 3D printing Carbon-based nanoparticles Conformal electromagnetic interference shielding Integrated electronics
在线阅读 下载PDF
Bionic-leaf vein inspired breathable anti-impact wearable electronics with health monitoring,electromagnetic interference shielding and thermal management 被引量:2
12
作者 Xinyi Wang Yan Tao +6 位作者 Chunyu Zhao Min Sang Jianpeng Wu Ken Cham-Fai Leung Ziyang Fan Xinglong Gong Shouhu Xuan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第21期216-227,共12页
Breathable and stretchable conductive materials are ideal for healthcare wearable electronic devices.However,the tradeoffbetween the sensitivity and detection range of electronic sensors and the challenge posed by sim... Breathable and stretchable conductive materials are ideal for healthcare wearable electronic devices.However,the tradeoffbetween the sensitivity and detection range of electronic sensors and the challenge posed by simple-functional electronics limits their development.Here,inspired by the bionic-leaf vein conductive path,silver nanowires(AgNWs)-Ti_(3)C_(2)T_(x)(MXene)hybrid structure assembled on the nonwoven fabrics(NWF)is well sandwiched between porous polyborosiloxane elastomer(PBSE)to construct the multifunctional breathable wearable electronics with both high anti-impact performance and good sensing behavior.Benefiting from the high conductive AgNWs-MXene hybrid structure,the NWF/AgNWsMXene/PBSE nanocomposite exhibits high sensitivity(GF=1158.1),wide monitoring range(57%),controllable thermal management properties,and excellent electromagnetic interference shielding effect(SE_(T)=41.46 dB).Moreover,owing to the wonderful shear stiffening effect of PBSE,the NWF/AgNWsMXene/PBSE possesses a high energy absorption performance.Combining with deep learning,this breathable electronic device can be further applied to wireless sensing gloves and multifunctional medical belts,which will drive the development of electronic skin,human-machine interaction,and personalized healthcare monitoring applications. 展开更多
关键词 Wearable electronics Health monitoring electromagnetic interference shielding Thermal management Bionic-leaf vein AgNWs MXene
原文传递
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:2
13
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites Thermal energy storage electromagnetic interference shielding
在线阅读 下载PDF
MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments 被引量:2
14
作者 Ziyuan Han Yutao Niu +11 位作者 Xuetao Shi Duo Pan Hu Liu Hua Qiu Weihua Chen Ben Bin Xu Zeinhom MEl-Bahy Hua Hou Eman Ramadan Elsharkawy Mohammed AAmin Chuntai Liu Zhanhu Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期82-98,共17页
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae... A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future. 展开更多
关键词 SiO_(2)nanofiber membranes MXene@c-MWCNT Composite film Thermal insulation electromagnetic interference shielding
在线阅读 下载PDF
Ultrathin and flexible MXene-contained electromagnetic interference shielding composite paper designed with a protective hydrogel film 被引量:2
15
作者 Jiasheng Wei Lei Dai +5 位作者 Ping He Meng Zhu Feng Jiang Zhaoxiang Zhou Guiqiang Fei Tingzhou Lei 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期199-208,共10页
MXene-contained paper is a good choice to design ultrathin and flexible electromagnetic interference(EMI)shielding materials.However,the deficiencies in strength and stability of MXene-contained paper impede its pract... MXene-contained paper is a good choice to design ultrathin and flexible electromagnetic interference(EMI)shielding materials.However,the deficiencies in strength and stability of MXene-contained paper impede its practical applications.Herein,a composite paper was proposed to address the problems,in which a filter paper was modified with a three-layer structured surface via a facile layer-by-layer coating procedure.Specifically,the TEMPO-oxidized cellulose nanofibers(TOCN)/cationic starch(CS)/MXene gel layer and TOCN/MXene nacre structure layer ensured the good EMI shielding and mechanical performances of the composite paper,while the uppermost TOCN/CS hydrogel film layer mainly protected MXene.The composite paper achieved an EMI SE of 40.3 dB at a thickness of merely 0.1894 mm(SE/t value of ca.212.8 dB mm^(−1),SSE/t values of ca.13216 dB cm 2 g^(−1))and the total MXene dosage was 20 g m^(−2).Its tensile strength could be up to 11.7 MPa while the original filter paper was 6.4 MPa.Four pieces of this composite papers could be easily packed together to attain an EMI SE of nearly 70 dB.Importantly,the hydrogel film layer efficiently protected the MXene and maintained the EMI shielding performance of the composite paper when immersed in different liquids including water,HCl(1 M)and ethanol,due to the dense and compact structure of hydrogel film layer.This work provides a practical way to develop ultrathin,flexible and durable EMI shielding materials. 展开更多
关键词 MXene electromagnetic interference shielding NANOCELLULOSE HYDROGEL
原文传递
PEDOT:PSS-patched magnetic graphene films with tunable dielectric genes for electromagnetic interference shielding and infrared stealth 被引量:2
16
作者 Jin-Cheng Shu Yu-Ze Wang Mao-Sheng Cao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期28-36,共9页
The intelligent era brings electronics closer to humans,but also produces a large scale of electromag-netic(EM)radiation simultaneously,which causes serious harm to health and high sophisticated equip-ment.Exploring t... The intelligent era brings electronics closer to humans,but also produces a large scale of electromag-netic(EM)radiation simultaneously,which causes serious harm to health and high sophisticated equip-ment.Exploring the underlying response logic of EM materials is urgently needed to face the challenge of EM interference(EMI)and secondary EM pollution better.Herein,PEDOT:PSS-patched magnetic graphene films are fabricated by vacuum-assisted molecular patching engineering,with tunable EM wave response.Based on the observation of micro-nano structure,the dielectric genes are visually revealed,which offers a bran-new horizon for the optimization of EM properties.Impressively,the constructed films achieve double band shielding toward gigahertz wave and infrared radiation.The optimal EMI shielding efficiency exceeds 99%,and covers the entire X-band.Meanwhile,the green shielding index rises from 0.3 to 0.6,indicating that it is a potential green EMI shielding materials.Furthermore,the periodic macroscopic interfaces and the inherent thermal anisotropy endow the films with thermal insulation and flexible in-frared stealth functions in simulated thermal environments.This work refreshes the insight into multi-band shielding,providing a new idea to EM energy governance. 展开更多
关键词 PEDOT:PSS-patched magnetic graphene films Vacuum-assisted molecular patching engineering Dielectric genes electromagnetic interference shielding Thermal stealth
原文传递
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:2
17
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater electromagnetic interference shielding
在线阅读 下载PDF
Highly Conductive Ag/pCF/MVQ Composite Rubber for Efficient Electromagnetic Interference Shielding 被引量:1
18
作者 Yang Chen Xiao-Ming Shao +4 位作者 Liang He Yi-Nuo Xu Qi-Yuan Yao Ding Feng Wen-Cai Wang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期864-873,共10页
In this study,flexible and highly conductive composite rubber at low filler content was successfully prepared through polydopamine-assisted electroless silver plating plus mechanical mixing.Firstly,carbon fibers(CF)we... In this study,flexible and highly conductive composite rubber at low filler content was successfully prepared through polydopamine-assisted electroless silver plating plus mechanical mixing.Firstly,carbon fibers(CF)were activated by polydopamine(PDA)to improve the surface activity by self-polymerization reaction.Next,because of the metal chelating ability of PDA,silver layer was firmly deposited on the surface of CF through a facile electroless silver plating method.Finally,flexible silver-plated carbon fibers(Ag/pCF)silicone rubber composites prepared by mechanical mixing.By using X-ray photoelectron spectroscopy(XPS)and X-ray diffraction(XRD),the chemical composition and crystal structure of Ag/pCF were examined,and scanning electron microscopy(SEM)was used to assess the surface morphology of the Ag/pCF.The results showed that a uniform and dense silver layer was formed on the surface of the CF,and the conductivity of the Ag/pCF could reach 7885 S/cm.It was noteworthy that the composite rubber filled with only 45 phr Ag/pCF had a high electromagnetic interference shielding effectiveness(100 dB)due to the low density and high aspect ratio of Ag/pCF.The composite rubber has excellent potential for application in the field of electromagnetic interference shielding. 展开更多
关键词 Carbon fibers POLYDOPAMINE Electroless plating SILVER electromagnetic interference shielding
原文传递
Robust liquid metal reinforced cellulose nanofiber/MXene composite film with Janus structure for electromagnetic interference shielding and electro-/photothermal conversion applications 被引量:2
19
作者 Hui Zhao Tong Gao +1 位作者 Jin Yun Lixin Chen 《Journal of Materials Science & Technology》 CSCD 2024年第24期23-32,共10页
MXene-based composite films are regarded as up-and-coming multifunctional electromagnetic interference(EMI)shielding materials.However,the conflict between strong mechanical properties and high electrical conductivity... MXene-based composite films are regarded as up-and-coming multifunctional electromagnetic interference(EMI)shielding materials.However,the conflict between strong mechanical properties and high electrical conductivity hinders their application in modern integrated electronics.Herein,in virtue of density-induced sedimentation,robust and multifunctional liquid metals-reinforced cellulose nanofibers(CNF)/MXene(LMs-CNF/MXene)composite films with Janus structure are fabricated by one-step vacuum-assisted filtration method.Not only does the nacre-like structure of the CNF/MXene layer not destroy,but the deposited liquid metals(LMs)layer can serve as conductive potentiation.Due to the special Janus structure,an“absorption-reflection-reabsorption”shielding process is created in LMs-CNF/MXene composite film to strengthen EMI shielding performance.Its shielding effectiveness can reach 51.9 dB at -27μm,and the reflection coefficient falls to 0.89,below those of reported MXene-based shielding films.Meanwhile,the CNF/MXene layer can endow composite films with excellent mechanical properties with a super tensile strength of 110.3 MPa.Notably,the LMs-CNF/MXene EMI shielding composite films also integrate outstanding photo-/electrothermal conversion performances,which can effectively deice outdoors.The robust LMs-CNF/MXene EMI shielding composite films with satisfying photo-/electrothermal performances have extensive application prospects,such as aerospace,wearable electronics,and portable electronics. 展开更多
关键词 MXene film Janus structure Mechanical properties electromagnetic interference shielding Electro-/photothermal conversion
原文传递
Trunk‑Inspired SWCNT‑Based Wrinkled Films for Highly‑Stretchable Electromagnetic Interference Shielding and Wearable Thermotherapy
20
作者 Xiaofeng Gong Tianjiao Hu +8 位作者 You Zhang Yanan Zeng Ye Zhang Zhenhua Jiang Yinlong Tan Yanhong Zou Jing Wang Jiayu Dai Zengyong Chu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期429-444,共16页
Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Eleph... Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications. 展开更多
关键词 electromagnetic interference shielding Single-walled carbon nanotubes WRINKLES STRETCHABLE THERMOTHERAPY
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部