期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Degradation of leachate and high concentration emerging pollutant tetracycline through electro oxidation
1
作者 Siyi Li Qiaona Xie +3 位作者 Mingdi Yang Ningrui Wu Yiting Lian Chengran Fang 《Journal of Environmental Sciences》 2026年第1期142-153,共12页
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti... In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms. 展开更多
关键词 Particle electrodes TETRACYCLINE Landfill leachate Three-dimensional electrocatalytic oxidation Degradation mechanism
原文传递
Recent advances on the electrocatalytic oxidation of biomass-derived aldehydes
2
作者 Zhikeng Zheng Ke Li +3 位作者 Lu Lin Zhiwei Jiang Yuchen Wang Kai Yan 《Green Energy & Environment》 2025年第5期898-916,共19页
The escalating demand for sustainable and environmentally benign chemical processes has driven the exploration of biomass as an alternative to non-renewable resources.Electrocatalytic upgrading of biomass-derived alde... The escalating demand for sustainable and environmentally benign chemical processes has driven the exploration of biomass as an alternative to non-renewable resources.Electrocatalytic upgrading of biomass-derived aldehydes plays a crucial role in biomass refining,and has become a frontier of mainstream research.This paper reviews the recent advances on the electrocatalytic oxidation of typical biomass-derived aldehydes(5-hydroxymethylfurfural,furfural,glucose,xylose,vanillin and benzaldehyde,etc.).The research presented in this review covers a wide range of oxidation mechanisms for each aldehyde.It is evident from the current literature that challenges related to the comprehensiveness of mechanistic studies,catalyst stability,and reaction scalability remain,but the rapid progress offers hope for future advancements.Finally,we elucidate the challenges in this domain and provide the perspectives on future developments.This review corroborates the significance of investigating the electrocatalytic oxidation of biomass-derived aldehydes and emphasizes the need for continued research to refine these processes for industrial applications. 展开更多
关键词 Electrocatalytic oxidation BIOMASS ALDEHYDES 5-HYDROXYMETHYLFURFURAL FURFURAL
在线阅读 下载PDF
Hydrophobic interface engineering of nickel hydroxide for efficient electrocatalytic fatty alcohol oxidation coupled with hydrogen production
3
作者 Ruiqi Du Rui Jia +5 位作者 Bingjie Yuan Zemao Chen Kaizheng Zhang Kaiqi Nie Binhang Yan Yi Cheng 《Journal of Energy Chemistry》 2025年第11期255-262,I0008,共9页
Electrocatalysis has emerged as a sustainable approach for the selective oxidation of fatty alcohols to fatty acids,circumventing the environmental concerns associated with conventional routes.However,the low aqueous ... Electrocatalysis has emerged as a sustainable approach for the selective oxidation of fatty alcohols to fatty acids,circumventing the environmental concerns associated with conventional routes.However,the low aqueous solubility of hydrophobic fatty alcohols presents a major challenge.While nickel hydroxide(Ni(OH)_(2))serves as a cost-effective catalyst for alcohol oxidation,its hydrophilic nature limits substrate accessibility and mass transport,causing sluggish kinetics and competing oxygen evolution.Herein,we propose a hydrophobic interface engineering strategy via co-electrodeposition of Ni(OH)_(2)with polytetrafluoroethylene(PTFE),fabricating the composite electrode(ED-Ni(OH)_(2)-PTFE).The optimized electrode achieves 95%Faradaic efficiency for octanoic acid at 1.5 V vs.RHE,with a production rate 2–3 times higher than pristine Ni(OH)_(2).Mechanistic studies combining in situ Raman spectroscopy,fluorescence imaging,and coarse-grained molecular dynamics simulations reveal that PTFE selectively enriches octanol at the electrode-electrolyte interface by modulating interfacial hydrophobicity.A continuous-flow microreactor integrating anodic octanol oxidation with cathodic hydrogen evolution reduces cell voltage by~100 m V,achieving simultaneous fatty acid and hydrogen production.This work highlights the critical role of hydrophobic interfacial microenvironment design in organic electrosynthesis,offering a promising strategy for upgrading fatty alcohols under mild conditions. 展开更多
关键词 Electrocatalytic oxidation Nickel hydroxide Hydrophobic interface Fatty acid Hydrogen production
在线阅读 下载PDF
CC/CoNi-LDH anode doped with Ce^(3+)achieving enhanced electrocatalytic oxidation of ciprofloxacin
4
作者 Xiao Wei Xuan Fang +7 位作者 Shuming Ma Huaqiang He Zhixin Wu Silin Li Shihao Zhang Pei Nian Wenlan Ji Yibin Wei 《Chinese Journal of Chemical Engineering》 2025年第4期79-88,共10页
Addressing the contamination of antibiotics has attracted ever-increasing and imperative attention due to their widespread existence,easy-to-cause drug-resistant bacteria infection,coupled with their intrinsic toxicit... Addressing the contamination of antibiotics has attracted ever-increasing and imperative attention due to their widespread existence,easy-to-cause drug-resistant bacteria infection,coupled with their intrinsic toxicity and hazard to environments and human health.Herein,a novel CC/CoNi-LDH-10%Ce anode material was directly constructed through a simple and rapid electrodeposition strategy,serving as an efficacious electrocatalyst for removing ciprofloxacin(CIP)from aqueous solution.Such novel CC/CoNi-LDH-10%Ce anode delivered a higher charge transfer,relatively abundant oxygen vacancies,and a higher electrochemical active area.The as-fabricated CC/CoNi-LDH-10%Ce electrode achieved a substantially boosted CIP removal efficiency of 52.5%relative to that of pure CC at about 23.9%.Notably,doping an appropriate amount of Ce^(3+)can endow the pristine CC/CoNi-LDH with richer oxygen vacancies and excellent electrocatalytic performance.Additionally,the electrocatalytic oxidation of CIP was attributed to both direct oxidation on the electrode surface and indirect oxidation induced by the generated active species(superoxide radicals and hydroxyl radicals).This study provides a simple,universal and flexible tactic for other researchers in designing and manufacturing avenues of electrodes. 展开更多
关键词 Layered double hydroxides CIPROFLOXACIN Rare earth metals Conductive carriers Electrocatalytic oxidation
在线阅读 下载PDF
Enhanced electrocatalytic oxidation of high-salinity quaternary ammonium compound wastewater using CNTs-(Ru_(x)Ir_(y)O_(2))/Ti Anode
5
作者 Hao-Tian Liu Han-Qing Zhao +7 位作者 Yi-Rui Yang Shuang Wu Jia-Ping Huang Rui-Han Yu Hongcheng Bai Aqiang Ding Daijun Zhang Peili Lu 《Journal of Environmental Sciences》 2025年第11期879-889,共11页
The organic pollutants,such as quaternary ammonium compounds,in high salinity flowback water from shale gas extraction may pose a severe risk to public health.Conventional biological technologies have limited effectiv... The organic pollutants,such as quaternary ammonium compounds,in high salinity flowback water from shale gas extraction may pose a severe risk to public health.Conventional biological technologies have limited effectiveness in the treatment of high-salt wastewaters,whereas electrocatalytic oxidation has shown potential for treating organic pollutants in high-salt flowback water.This study developed a carbon nanotubes(CNTs)doped Ru/Ir oxide coated Ti electrode CNTs-(Ru_(x)Ir_(y)O_(2))/Ti,which exhibited enhanced electrocatalytic performance for the treatment of quaternary ammonium compound in high-salt wastewater compared to the control metal oxide coated Ti anode(Ru_(x)Ir_(y)O_(2))/Ti,with pseudofirst-order reaction rate constant improved from 7.36×10^(-3) to 1.12×10^(-2) min−1.Moreover,the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti anode electrocatalytic oxidation system exhibited excellent cycling stability.Mechanism studies indicated that the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti electrode enhanced singlet oxygen(^(1)O_(2))generation,which played a major role in pollutant degradation.Furthermore,the formation of high concentrations of HClO and H_(2)O_(2) further facilitated the generation of ^(1)O_(2).This study may provide an efficient and green technology for the treatment of organic pollutants in high-salt shale gas flowback water. 展开更多
关键词 High salt wastewater Quaternary ammonium compound Electrocatalytic oxidation CNTs doping Dimensionally stable anode
原文传递
Mn_(0.6)Ce_(0.4)O_(2)/CNT electrocatalyst boosts the efficient electrocatalytic oxidation of toluene to benzoic acid
6
作者 Aixin Ma Yue Shi +4 位作者 Jiejie Bai Hangkai Shi G.A.Bagliuk Jianping Lai Lei Wang 《Journal of Energy Chemistry》 2025年第5期565-575,共11页
Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and ... Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time. 展开更多
关键词 Electrocatalytic oxidation AEM electrolyzer Mn_(0.6)Ce_(0.4)O_(2)/CNT catalyst Toluene oxidation Benzoic acid
在线阅读 下载PDF
Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode 被引量:12
7
作者 Meng Zhu Longshuai Zhang +7 位作者 Shanshan Liu Dengke Wang Yuancheng Qin Ying Chen Weili Dai Yuehua Wang Qiuju Xing Jianping Zou 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第7期1961-1965,共5页
Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrop... Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrophenol(4-NP)in the presence of peroxymonosulfate(PMS)and simultaneous electrocatalytic reduction of CO2,respectively.In this process,4-NP was mineralized into CO2 by the Co3O4@C,and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode.Compared with the pure Co0.5(Co3O4 was prepared using 0.5 g urea)with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP(60 mL,10 mg/L)increased from 74.5%-85.1%in 60 min using the Co0.5 modified by amorphous carbon(Co0.5@C).Furthermore,when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP increased from 85.1%-99.1%when Pt was used as cathode.In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction,the degradation efficiency of 4-NP was 99.0%in the anodic system of Co0.5@C with addition of PMS(30 mg,0.5 g/L),while the Faraday efficiency(FE)of HCOOH was 24.1%at voltage of-1.3 V using the SnO2/CC as cathode.The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP,while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode.Finally,the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes(AOPs)and simultaneous CO2 reduction. 展开更多
关键词 Advanced oxidation processes CO2 reduction DEGRADATION Electrocatalytic oxidation Sulfate radical
原文传递
Efficient electrooxidation of biomass-derived aldehydes over ultrathin Ni V-layered double hydroxides films 被引量:4
8
作者 Biying Liu Zhikeng Zheng +4 位作者 Yaoyu Liu Man Zhang Yuchen Wang Yangyang Wan Kai Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期412-421,I0012,共11页
Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over... Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals. 展开更多
关键词 NiV-LDHs FILMS Hydroxyl radicals Electrocatalytic oxidation Biomass-derived aldehydes
在线阅读 下载PDF
Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation 被引量:4
9
作者 Yi Zhou Jialai Hu +1 位作者 Lichun Yang Qingsheng Gao 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第6期2845-2855,共11页
Oxygen evolution reaction(OER)is pivotal to drive green hydrogen generation from water electrolysis,but yet is strictly overshadowed by the sluggish reaction kinetics.Earth-abundant and cut-price transitionmetal compo... Oxygen evolution reaction(OER)is pivotal to drive green hydrogen generation from water electrolysis,but yet is strictly overshadowed by the sluggish reaction kinetics.Earth-abundant and cut-price transitionmetal compounds,particularly Co Fe layered-double-hydroxides(LDHs),show the distinct superiorities in contrast to noble metals and their derivatives.In this review,we firstly underline their fundamental issues in electrocatalytic water oxidation,including Co Fe LDHs crystal structure,the surface of(hydr)oxides confined to OER and the controversial roles of Fe species,aiming at understanding the structure-related activity and catalytic mechanism.Advanced approaches for optimizing OER activity of Co Fe LDHs are then comprehensively overviewed,which will shed light on the different working mechanisms and provide a concise analysis of their unique advantages.Finally,a perspective on the future development of Co Fe LDHs electrocatalysts is offered.We hope this review can give a concise and explicit guidance for the development of transition-metal-based electrocatalysts in the energy field. 展开更多
关键词 CoFe layered-double-hydroxides Electrocatalytic water oxidation Two-dimensional nanostructures Surface reconstruction d-band
原文传递
Oxygen-coordinated low-nucleus cluster catalysts for enhanced electrocatalytic water oxidation 被引量:5
10
作者 Jiapeng Ji Yunpeng Hou +7 位作者 Shiyu Zhou Tong Qiu Liang Zhang Lu Ma Chao Qian Shaodong Zhou Chengdu Liang Min Ling 《Carbon Energy》 SCIE CSCD 2023年第2期137-147,共11页
The oxygen evolution reaction(OER)activity of single-atom catalysts(SACs)is closely related to the coordination environment of the active site.Oxygencoordinated atomic metal species bring about unique features beyond ... The oxygen evolution reaction(OER)activity of single-atom catalysts(SACs)is closely related to the coordination environment of the active site.Oxygencoordinated atomic metal species bring about unique features beyond nitrogen-coordinated atomic metal species due to the fact that the M-O bond is weaker than the M-N bond.Herein,a series of metal-oxygen-carbon structured low-nucleus clusters(LNCs)are successfully anchored on the surface of multiwalled carbon nanotubes(M-MWCNTs,M=Ni,Co,or Fe)through a foolproof low-temperature gas transfer(300℃)method without any further treatment.The morphology and coordination configuration of the LNCs at the atomic level were confirmed by comprehensive characterizations.The synthetic Ni-MWCNTs electrocatalyst features excellent OER activity and stability under alkaline conditions,transcending the performances of Co-MWCNTs,Fe-MWCNTs and RuO_(2).Density functional theory calculations reveal that the moderate oxidation of low-nucleus Ni clusters changes the unoccupied orbital of Ni atoms,thereby lowering the energy barrier of the OER rate-limiting step and making the OER process more energy-efficient.This study demonstrates a novel versatile platform for large-scale manufacturing of oxygen-coordinated LNC catalysts. 展开更多
关键词 electrocatalytic water oxidation low-nucleus cluster low-temperature gas transfer metal-oxygen-carbon structure
在线阅读 下载PDF
The Electrochemical Behavior of Au/Au NPs/PNA/ZnS e-QD/ACA Electrode Towards Cy SH Oxidation 被引量:3
11
作者 Azadeh Azadbakht Amir Reza Abbasi +1 位作者 Zohreh Derikvand Ziba Karimi 《Nano-Micro Letters》 SCIE EI CAS 2015年第2期152-164,共13页
This work describes the electrochemical behavior of azodicarboxamide(ACA) film immobilized on the surface of penicillamine(PNA)/Zn Se-quantum dot(Zn Se-QD) gold nanoparticle(Au NPs) Au electrode. Electrocatalytic acti... This work describes the electrochemical behavior of azodicarboxamide(ACA) film immobilized on the surface of penicillamine(PNA)/Zn Se-quantum dot(Zn Se-QD) gold nanoparticle(Au NPs) Au electrode. Electrocatalytic activity of modified electrode toward the oxidation of cysteine(Cy SH) was investigated. The surface structure and composition of the sensor were characterized by scanning electron microscopy(SEM). Oxidation of Cy SH on the surface of modified electrode was investigated with cyclic voltammetry, electrochemical impedance spectroscopy(EIS),hydrodynamic voltammetry and chronoamperometry methods. The results show that the PNA/Zn Se-QD/ACA film displays excellent electrochemical catalytic activities towards Cy SH oxidation. The modified electrode shows reproducible behavior and high level of stability during the electrochemical experiments. Also it has short response time, low detection limit, high sensitivity and low operation potential, which can be used as an amperometric sensor for monitoring of Cy SH. The proposed modified electrode was successfully used for determination of Cy SH in real sample such as human serum. 展开更多
关键词 Penicillamine(PNA) Azodicarboxamide(ACA) Zn Se quantum dot Electrocatalytic oxidation Cysteine(Cy SH)
在线阅读 下载PDF
MIL-101(Cr)-decorated Ti/TiO_(2) anode for electrochemical oxidation of aromatic pollutants from water 被引量:2
12
作者 Zepeng Zhang Yunyun Li +4 位作者 Longzhang Dong Zhonglong Yin Ziqi Tian Weiben Yang Zhen Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期301-305,共5页
Hydroxyl radicals(·OH) generated on anode play a vital role in electrochemical oxidation(EO) of organic pollutants for water treatment. Inspired by the four-electron oxygen evolution reaction(OER), we supposed an... Hydroxyl radicals(·OH) generated on anode play a vital role in electrochemical oxidation(EO) of organic pollutants for water treatment. Inspired by the four-electron oxygen evolution reaction(OER), we supposed an anode-selection strategy to stabilize deeply oxidized states(*O and*OOH) which are beneficial to generating·OH. To verify the hypothesis, a candidate anode component(MIL-101(Cr), a well-known metal-organic framework with active variable-valence transition metal centers) was used to coat Ti/TiO_(2)plate to fabricate anodes. Compared to TiO_(2)(101) plane on undecorated anode surface, fast and complete removal of aniline and phenol, and improved energy utilization were achieved on MIL-101(Cr)-coatedTi/TiO_(2)anode. Mechanism investigation, including pollutant degradation pathways, showed the predominate contribution(69.60%–75.13%) of·OH in pollutant mineralization. Density functional theory(DFT)computations indicated Cr site in MIL-101(Cr) was more conducive to stabilizing*O and*OOH, leading to thermodynamical spontaneous generation of·OH. This work opens up an exciting avenue to explore·OH production, and supplies a useful guidance to the development of anode materials for EO process. 展开更多
关键词 Active oxidation species Electrocatalytic oxidation DFT computation MOF Hydroxyl radical Composite anode
原文传递
Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/Pb0_(2)electrodes:Preparation,characterization,optimization,application 被引量:3
13
作者 Zhen Wei Xuanqi Kang +3 位作者 Shangyuan Xu Xiaokang Zhou Bo Jia Qing Feng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期191-202,共12页
Regulation of the electronic structure and interface property becomes a major strategy in the preparation of electrocatalyst.This paper reports the synthesis of cerium(Ce)and sodium dodecyl benzene sulfonate(SDBS)como... Regulation of the electronic structure and interface property becomes a major strategy in the preparation of electrocatalyst.This paper reports the synthesis of cerium(Ce)and sodium dodecyl benzene sulfonate(SDBS)comodified Ti/PbO_(2)electrodes(Ti/PbO2CeSDBS).Ce and SDBS could greatly change the electronic structure and interface property of PbO2.Ti/PbO_(2)CeSDBS exhibited excellent electrocatalytic activity and stability in Rhodamine B(RhB)electrocatalytic oxidation reaction.The improved electrocatalytic activity associates with the synergistic effect of electronic and interface factors.In the electrochemical degradation of RhB,the removal efficiencies of RhB and COD are about 0.880 and 0.694 respectively after the electrolysis of 220 min with Ti/PbO_(2)Ce4SDBS40,which are higher than the contrast Ti/PbO_(2)electrodes.In the meantime,the accelerated lifetime of Ti/PbO_(2)Ce4SDBS40 is more than 6.2 times than that of Ti/PbO_(2). 展开更多
关键词 Ti/PbO_(2)electrodes Electrocatalytic oxidation
在线阅读 下载PDF
Electrooxidation of Nitric Oxide at a Glass Carbon Electrode Modified with Functionalized Single-walled Carbon Nanotube 被引量:1
14
作者 LI Li SHI Ke-ying 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第6期1025-1030,共6页
The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochem... The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).It was found that the SWCNT modified electrode could speed greatly up the electron transfer rate compared with the bare GC electrode.After the SWCNT was treated with alkali or mixed acids,the reaction rate and activation energy of NO electrooxidation were changed to different extent.Chemical modification of the SWCNT surface is one of the most powerful methods to change the sensitivity of NO electrooxidation reaction.The modified electrode with SWCNT obtained by the firstly alkali treatment and then the mixed acids treatment was the best one for NO electrooxidation,the result of CV was also confirmed by that of EIS.The anodic processes of NO were recognized more clearly by exploring the reaction mechanism of NO electrooxidation at the SWCNT modified electrode. 展开更多
关键词 Single-walled carbon nanotube Modified electrode Nitric oxide Electrocatalytic oxidation Cyclic voltammetry
在线阅读 下载PDF
Green bio-synthesis of Ni/montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol 被引量:1
15
作者 Mohammad Hossein Sheikh-Mohseni Sajjad Sedaghat +1 位作者 Pirouz Derakhshi Aliakbar Safekordi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第10期2555-2565,共11页
In this work,synthesis of Ni nanoparticles was carried out successfully by water extract of Allium jesdianum as a biochemical reducing agent in the presence of montmorillonite clay(MMT)as a natural solid support for t... In this work,synthesis of Ni nanoparticles was carried out successfully by water extract of Allium jesdianum as a biochemical reducing agent in the presence of montmorillonite clay(MMT)as a natural solid support for the first time.Then the electrochemical activity of the synthesized nanocomposite was investigated in methanol electrocatalytic oxidation.MMT with high cation exchange capacity and nano layer structure was exposed to ion exchange conditions in nickel solution.Then Ni^2+ion exchanged form was used in this process as a source of ions and also capping agent.Water extract of Allium jesdianum used as a reducing agent due to abundant availability of phenolic and flavonoid contents.The synthesized Ni/MMT nanocomposite was characterized using UV–Vis spectroscopy(UV–Vis),Fourier Transform Infrared Spectroscopy(FT-IR),X-ray diffraction(XRD),Scanning Electron Microscopy(SEM),Transmission electron microscopy(TEM)and Energy-dispersive X-ray spectroscopy(EDX).The surface of prepared modified electrode has been characterized using SEM to evaluate the morphology,showing uniform dispersion of Ni nanoparticles with mean diameter of 12 to 20 nm.The modified carbon paste electrode was then used in methanol electrocatalytic oxidation reaction.Methanol oxidation on the proposed modified electrode surface occurs at 0.6 V and 0.3 V in alkaline and acidic medium respectively.Also,the results showed the better performance of modified electrode toward methanol electrocatalytic oxidation in comparison with carbon paste electrode that is modified by ion exchanged MMT.Charge transfer coefficients and apparent charge transfer rate constant for the modified electrode in the absence of methanol in alkaline medium were respectively found as:αa=0.53,αc=0.37 and ks=1.6×10^-1 s^-1.Also,the average value of catalytic rate constant for the electrocatalytic oxidation of methanol by the prepared nano-catalyst was estimated to be about 0.9 L·mol^-1·s^-1 by chronoamperometry technique.The prepared electrode was also effective for electrocatalytic oxidation of ethanol and formaldehyde in alkaline medium. 展开更多
关键词 Green biosynthesis Nanoparticles MONTMORILLONITE BIOCATALYSIS Methanol electrocatalytic oxidation Fuel cell
在线阅读 下载PDF
Electrocatalytic oxidation of gaseous toluene in an all-solid cell using a foam Ti/Sb-SnO2/β-PbO_(2) anode 被引量:1
16
作者 Zhikun Liu Weiming Qian +7 位作者 Min Chen Wenshuo Zhou Boying Song Bo Zhang Xiaolei Bao Qiong Tang Yongchun Liu Changbin Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第12期77-85,共9页
Mineralization of benzene,toluene,and xylene (BTX) with high efficiency at room temperature is still a challenge for the purification of indoor air.In this work,a foam Ti/Sb-Sn O2/β-Pb O_(2)anode catalyst was prepare... Mineralization of benzene,toluene,and xylene (BTX) with high efficiency at room temperature is still a challenge for the purification of indoor air.In this work,a foam Ti/Sb-Sn O2/β-Pb O_(2)anode catalyst was prepared for electrocatalytically oxidizing gaseous toluene in an all-solid cell at ambient temperature.The complex Ti/Sb-Sn O_(2)/β-Pb O_(2)anode,which was prepared by sequentially deposing Sb-Sn O_(2)and β-Pb O_(2)on a foam Ti substrate,shows high electrocatalytic oxidation efficiency of toluene (80%) at 7 hr of reaction and high CO_(2)selectivity (94.9%) under an optimized condition,i.e.,a cell voltage of 2.0 V,relative humidity of60%and a flow rate of 100 m L/min.The better catalytic performance can be ascribed to the high production rate of·OH radicals from discharging adsorbed water and the inhibition of oxygen evolution on the surface of foam Ti/Sb-Sn O_(2)/β-Pb O_(2)anode when compared with the foam Ti/Sb-Sn O_(2)anode.Our results demonstrate that prepared complex electrodes can be potentially used for electrocatalytic removal of gaseous toluene at room temperature with a good performance. 展开更多
关键词 Gaseous toluene Electrocatalytic oxidation Lead dioxide Indoor air purification Solid cell
原文传递
Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine 被引量:1
17
作者 Seyed Karim Hassaninejad-Darzi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第2期283-296,共14页
A nickel salen complex was encapsulated in the supercages of nanozeolite NaA,LTA(linde type A)structure,using the flexible ligand method.The electrochemical behavior and electrocatalytic activity of a carbon paste ele... A nickel salen complex was encapsulated in the supercages of nanozeolite NaA,LTA(linde type A)structure,using the flexible ligand method.The electrochemical behavior and electrocatalytic activity of a carbon paste electrode(CPE)modified with Ni(II)‐Salen‐A(Ni(II)‐SalenA/CPE)for hydrazine oxidation in0.1mol/L NaOH solution were investigated by cyclic voltammetry,chronoamperometry,and chronocoulometry.First,organic‐template‐free synthesis of nanozeolite LTA was performed and the obtained material was characterized by various techniques.The average particle size of the LTA crystals was estimated to be56.1and72nm by X‐ray diffraction and particle size analysis,respectively.The electron transfer coefficient was found to be0.64and the catalytic rate constant for oxidation of hydrazine at the redox sites of Ni(II)‐SalenA/CPE was found to be1.03×105cm3/(mol·s).Investigation of the electrocatalytic mechanism suggested that oxidation of hydrazine occurred through reaction with Ni3+(Salen)O(OH)and also direct electrooxidation.The anodic peak currents revealed a linear dependence on the square root of the scan rate,indicating a diffusion‐controlled process,and the diffusion coefficient of hydrazine was found to be1.18×10?7cm2/s.The results indicated that Ni(II)‐SalenA/CPE displays good electrocatalytic activity toward hydrazine oxidation owing to the porous structure of nanozeolite LTA and the Ni(II)‐Salen complex.Finally,the general reaction mechanism for the electrooxidation of hydrazine on Ni(II)‐SalenA/CPE in alkaline solution involves the transfer of four electrons,in which the first electron transfer reaction acts as the rate‐limiting step followed by a three‐electron process to generate environmentally friendly nitrogen and water as final products. 展开更多
关键词 Nanozeolite linde type A Salen complex Ni(II)‐SalenA modified carbon paste electron HYDRAZINE Electrocatalytic oxidation Fuel cell
在线阅读 下载PDF
In-situ assembly of 2D/3D porous nickel cobalt sulfide solid solution as superior pre-catalysts to boost multi-functional electrocatalytic oxidation 被引量:1
18
作者 Pin Hao Xu Dong +6 位作者 Houguang Wen Ruirui Xu Junfeng Xie Qian Wang Guanwei Cui Jian Tian Bo Tang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期365-368,共4页
In this work,we fabricated an efficient pre-catalyst based on(Ni,Co)S2solid solution with hierarchical architecture and high porosity to boost urea oxidation reaction and electrocatalytic oxidation of organic small mo... In this work,we fabricated an efficient pre-catalyst based on(Ni,Co)S2solid solution with hierarchical architecture and high porosity to boost urea oxidation reaction and electrocatalytic oxidation of organic small molecules.The interaction between Ni and Co can optimize the electronic structure,resulting in the improved conductivity and accelerated charge transfer rate.The 2D/3D architecture can enrich more active species and endow the mass and electron transport to facilitate the surface oxidation and the following catalytic process.Post-structure and catalytic characterizations confirm the surface oxidation of(Ni,Co)S_(2)during the stability test,and the in-situ formed Co(Ni)based(oxy)hydroxides exhibit superior catalytic activity and facilitated charge transfer ability.As a result,the optimal(Ni,Co)S_(2)solid solution pre-catalyst displays facilitated catalytic behavior and good stability for multifunctional electrocatalytic oxidation,in which a high conversion of benzyl alcohol(97.50%),a good selectivity to benzoic acid(93.78%)and a satisfied faraday efficiency(91.86%)can be achieved. 展开更多
关键词 Electrocatalytic oxidation (Ni Co)S_(2)solid solution Pre-catalyst Urea oxidation reaction 2D/3D architecture
原文传递
Promoter Effects of Rare Earth Ions on Electrocatalytic Oxidation of Methanol 被引量:1
19
作者 JingHuaLIU HuiYANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第6期489-490,共2页
The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time ... The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time that Eu、Ho、Dy ions could accelerate the electrocatalytic oxidation of methanol at the Pt electrode, while Lu、Pr、Yb、Sm ions showed inhibitor effects. 展开更多
关键词 Rare earth METHANOL electrocatalytic oxidation.
在线阅读 下载PDF
The Catalysis of NAD^+ on Methanol Anode Oxidation Electrode for Direct Methanol Fuel Cell 被引量:1
20
作者 张萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第4期23-25,共3页
A tentative idea of developing a liquid-catalytic system on methanol anode oxidation was proposed by analyzing the characteristics of methanol anode oxidation in direct methanol fuel cell. The kinetics of methanol oxi... A tentative idea of developing a liquid-catalytic system on methanol anode oxidation was proposed by analyzing the characteristics of methanol anode oxidation in direct methanol fuel cell. The kinetics of methanol oxidation at a glassy carbon electrode in the presence of nicotinamide adenine dinucleotide (NAD +) was investigated. It is found that the current density of methanol oxidation increases greatly and the electrochemical reaction impedance reduces obviously in the presence of NAD + compared with those in the absence of NAD +. The catalytic activity of NAD + is sensitive to temperature. When the temperature preponderates over 45℃, NAD + is out of function of catalysis for methanol oxidation, which is probably due to the denaturation of NAD + at a relatively high temperature. 展开更多
关键词 direct methanol fuel cell electrocatalytic oxidation nicotinamide adenine dinucleotide
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部