In this study,the flexural rigidity of a honeycomb consisting of regular hexagonal cells is investigated.It is found that the honeycomb bending can not be evaluated by using the equivalent elastic moduli obtained from...In this study,the flexural rigidity of a honeycomb consisting of regular hexagonal cells is investigated.It is found that the honeycomb bending can not be evaluated by using the equivalent elastic moduli obtained from the in-plane deformation because the moments acting on the inclined cell wall are different for in-plane deformation and bending deformation.Based on the fact that the inclined wall is twisted under the condition of the rotation angle in both connection edges being zero,a theoretical technique for calculating the flexural rigidity of honeycombs is proposed,and the validity of the present analysis is demonstrated by numerical results obtained by BFM.展开更多
A numerical–analytical approach is described to investigate the process of impact interaction between a long smooth rigid body and the surface of a circular cylindrical cavity in elastic space. A non-stationary mixed...A numerical–analytical approach is described to investigate the process of impact interaction between a long smooth rigid body and the surface of a circular cylindrical cavity in elastic space. A non-stationary mixed initial boundary value problem is formulated with a priori unknown boundaries moving with variable velocity. The problem is solved using the methods of the theory of integral transforms, expansion of desired variables into a Fourier series, and the quadrature method to reduce the problem to solving a system of linear algebraic equations at each time step. Some concrete numerical computations are presented.The cylindrical body mass and radius impact on the proile of the transient process of contact interaction has been analysed.展开更多
The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled ...The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled rigid/elastic blended element based on the fle xible multibody system theory in this paper. It accounts for the effects of prec one, sweep, and the moderately large elastic deflections on the blade and elasti city of shaft and fuselage of the helicopter. The dynamic coupling between the r igid motion of blades about the flap, lag and pitch hinges of articulated rotor and moderately large elastic deflections are included. There is no restriction o n the rotation amplitudes of flap, lag and pitch in the formulation. The stabili ty of periodic solution is studied using the Floquet theory. The transition matr ix is calculated by the Newmark integration method. The aeromechanical stability of a new helicopter is studied. The results show that it is stable in the given forward flight. But the instability arises with the decrease of the bending and torsion stiffness of the shaft.展开更多
Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers.Any changes in blood pressure and its normal velocity can be a sign of a disease.Whateve...Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers.Any changes in blood pressure and its normal velocity can be a sign of a disease.Whatever significant in blood fluid's mechanics is Constitutive equations and finding some relations for analysis and description of drag,velocity and periodic blood pressure in vessels.In this paper,by considering available experimental quantities,for blood pressure and velocity in periodic time of a thigh artery of a living dog,at first it is written into Fourier series,then by solving Navier-Stokes equations,a relation for curve drawing of vessel blood pressure with rigid wall is obtained.Likewise in another part of this paper,vessel wall is taken in to consideration that vessel wall is elastic and its pressure and velocity are written into complex Fourier series.In this case,by solving Navier-Stokes equations,some relations for blood velocity,viscous drag on vessel wall and blood pressure are obtained.In this study by noting that vessel diameter is almost is large(3.7 mm),and blood is considered as a Newtonian fluid.Finally,available experimental quantities of pressure with obtained curve of solving Navier-Stokes equations are compared.In blood analysis in rigid vessel,existence of 48% variance in pressure curve systole peak caused vessel blood flow analysis with elastic wall,results in new relations for blood flow description.The Resultant curve is obtained from new relations holding 10% variance in systole peak.展开更多
文摘In this study,the flexural rigidity of a honeycomb consisting of regular hexagonal cells is investigated.It is found that the honeycomb bending can not be evaluated by using the equivalent elastic moduli obtained from the in-plane deformation because the moments acting on the inclined cell wall are different for in-plane deformation and bending deformation.Based on the fact that the inclined wall is twisted under the condition of the rotation angle in both connection edges being zero,a theoretical technique for calculating the flexural rigidity of honeycombs is proposed,and the validity of the present analysis is demonstrated by numerical results obtained by BFM.
文摘A numerical–analytical approach is described to investigate the process of impact interaction between a long smooth rigid body and the surface of a circular cylindrical cavity in elastic space. A non-stationary mixed initial boundary value problem is formulated with a priori unknown boundaries moving with variable velocity. The problem is solved using the methods of the theory of integral transforms, expansion of desired variables into a Fourier series, and the quadrature method to reduce the problem to solving a system of linear algebraic equations at each time step. Some concrete numerical computations are presented.The cylindrical body mass and radius impact on the proile of the transient process of contact interaction has been analysed.
文摘The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled rigid/elastic blended element based on the fle xible multibody system theory in this paper. It accounts for the effects of prec one, sweep, and the moderately large elastic deflections on the blade and elasti city of shaft and fuselage of the helicopter. The dynamic coupling between the r igid motion of blades about the flap, lag and pitch hinges of articulated rotor and moderately large elastic deflections are included. There is no restriction o n the rotation amplitudes of flap, lag and pitch in the formulation. The stabili ty of periodic solution is studied using the Floquet theory. The transition matr ix is calculated by the Newmark integration method. The aeromechanical stability of a new helicopter is studied. The results show that it is stable in the given forward flight. But the instability arises with the decrease of the bending and torsion stiffness of the shaft.
文摘Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers.Any changes in blood pressure and its normal velocity can be a sign of a disease.Whatever significant in blood fluid's mechanics is Constitutive equations and finding some relations for analysis and description of drag,velocity and periodic blood pressure in vessels.In this paper,by considering available experimental quantities,for blood pressure and velocity in periodic time of a thigh artery of a living dog,at first it is written into Fourier series,then by solving Navier-Stokes equations,a relation for curve drawing of vessel blood pressure with rigid wall is obtained.Likewise in another part of this paper,vessel wall is taken in to consideration that vessel wall is elastic and its pressure and velocity are written into complex Fourier series.In this case,by solving Navier-Stokes equations,some relations for blood velocity,viscous drag on vessel wall and blood pressure are obtained.In this study by noting that vessel diameter is almost is large(3.7 mm),and blood is considered as a Newtonian fluid.Finally,available experimental quantities of pressure with obtained curve of solving Navier-Stokes equations are compared.In blood analysis in rigid vessel,existence of 48% variance in pressure curve systole peak caused vessel blood flow analysis with elastic wall,results in new relations for blood flow description.The Resultant curve is obtained from new relations holding 10% variance in systole peak.