Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ...Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.展开更多
The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on unders...The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.展开更多
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material...We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.展开更多
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ...The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).展开更多
Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modu...Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.展开更多
A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib...A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.展开更多
An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interf...An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape.展开更多
Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability o...Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.展开更多
In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specim...In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.展开更多
As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-r...As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.展开更多
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR...A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.展开更多
The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations ...The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).展开更多
It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes a...It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings con- firm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re- sults in a more obvious trend of cell differentiation into astrocytes.展开更多
The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus ...The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.展开更多
Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspa...Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspars, micas)(z86%), sulphides(pyrite)(z3%), carbonates(calcite, dolomite)(z10%) and organic kerogen(z1%). Three sets of measurements of the modulus of deformability were compared as determined in(i) nanoindentation tests with a constant indentation depth of 2 mm,(ii) micro-indentation tests with a constant indentation depth of 20 mm, and(iii) meso-compression tests with a constant displacement of 200 mm. These three experimental methods have already been validated in earlier studies. The main objective of this study is to demonstrate the influence of the scaling effect on the modulus of deformability of the material. Different frequency distributions of the modulus of deformability were obtained at the different sample scales:(i) in nano-indentation tests, the distribution was spread between 15 GPa and 90 GPa and contained one peak at34 GPa and another at 51 GPa;(ii) in the micro-indentation tests, the distribution was spread between 25 GPa and 60 GPa and displayed peaks at 26 GPa and 37 GPa; and(iii) in the meso-compression tests, a narrow frequency distribution was obtained, ranging from 25 GPa to 50 GPa and with a maximum at around 35 GPa.展开更多
The two-stage gas boriding in N_(2)−H_(2)−BCl_(3)atmosphere was applied to producing a two-zoned borided layer on Nisil-alloy.The process was carried out at 910℃ for 2 h.The microstructure consisted of two zones diff...The two-stage gas boriding in N_(2)−H_(2)−BCl_(3)atmosphere was applied to producing a two-zoned borided layer on Nisil-alloy.The process was carried out at 910℃ for 2 h.The microstructure consisted of two zones differing in their phase composition.The outer layer contained only a mixture of nickel borides(Ni_(2)B,Ni_(3)B)only.The inner zone contained additionally nickel silicides(Ni_(2)Si,Ni_(3)Si)occurring together with nickel borides.The aim of this study was to determine the presence of nickel silicides on the mechanical properties of the borided layer produced on Ni-based alloy.The hardness and elastic modulus were measured using the nanoindenter with a Berkovich diamond tip under a load of 50 mN.The average values of indentation hardness(HI)and indentation elastic modulus(E_(I))obtained in the outer zone were respectively(16.32±1.03)GPa and(232±16.15)GPa.The presence of nickel silicides in the inner zone reduced the indentation hardness(6.8−12.54 GPa)and elastic modulus(111.79−153.99 GPa).The fracture toughness of the boride layers was investigated using a Vickers microindentation under a load of 0.981 N.It was confirmed that the presence of nickel silicides caused an increase in brittleness(by about 40%)of the gas-borided layer.展开更多
Al-xV alloys(x=2 at.%,5 at.%,10 at.%)with nanocrystalline structure and high solid solubility of V were produced in powder form by high-energy ball milling(HEBM).The alloy powders were consolidated by spark plasma sin...Al-xV alloys(x=2 at.%,5 at.%,10 at.%)with nanocrystalline structure and high solid solubility of V were produced in powder form by high-energy ball milling(HEBM).The alloy powders were consolidated by spark plasma sintering(SPS)employing a wide range of temperatures ranging from 200 to 400°C.The microstructure and solid solubility of V in Al were investigated using X-ray diffraction analysis,scanning electron microscope and transmission electron microscope.The microstructure was influenced by the SPS temperature and V content of the alloy.The alloys exhibited high solid solubility of V–six orders of magnitude higher than that in equilibrium state and grain size<50 nm at all the SPS temperatures.The formation of Al3V intermetallic was detected at 400℃.Formation of a V-lean phase and bimodal grain size was observed during SPS,which increased with the increase in SPS temperature.The hardness and elastic modulus,measured using nanoindentation,were significantly higher than commercial alloys.For example,Al-V alloy produced by SPS at 200℃ exhibited a hardness of 5.21 GPa along with elastic modulus of 96.21 GPa.The evolution of the microstructure and hardness with SPS temperatures has been discussed.展开更多
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s...Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.展开更多
304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying (CGDS), and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 30...304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying (CGDS), and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 304 stain- less steel coating was measured using the three-point bend testing and the compound beam theory, and the other me- chanic parameters (such as the equivalent flexural rigidity and the moment of inertia of area) of the coatings were also calculated using this compound beam theory. It is found that the calculated results using the above methods are accu- rate and reliable. The elastic modulus value of the cold sprayed 304 stainless steel coating is 1. 179 X 105 MPa, and it is slightly lower than the 304 stainless steel plate (about 2 X 105 MPa). It indicates that the elastic modulus of the cold sprayed coatings was quite different from the comparable bulk materials. The main reason is that the pores and other defects are existed in the coatings, and the elastic modulus of the coatings also depends on varies parameters such as the feed stock particle size, porosity, and processing parameters.展开更多
基金support of this project through the Southwest Regional Partnership on Carbon Sequestration(Grant No.DE-FC26-05NT42591)Improving Production in the Emerging Paradox Oil Play(Grant No.DE-FE0031775).
文摘Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.
基金supported by the Key R&D Program Project of Xinjiang Province(2024B01013)the National Key Research and Development Program of China(2022YFE0129800).
文摘The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.
基金Funded by Demonstration Platform for the Production and Application of Key Materials for High-grade CNC Machine Tools(No.2020-370104-34-03-043952)。
文摘We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.
基金supported by the National Natural Science Foundation of China (Grant No.51705082)Fujian Provincial Minjiang Scholar Program (Grant No.0020-510759)+1 种基金Qishan Sholar program in Fuzhou University (Grant No.0020-650289)Fuzhou University Testing Fund of precious apparatus (Grant No.2023T018).
文摘The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).
基金financial support from the Chilean National Agency for Research and Development(ANID),National Doctorate No.21212028financial support from ANID,FONDECYT Regular Research Project No.1221793.
文摘Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.
基金supported by the National Natural Science Foundation of China(Nos.51821001 and U2037601)Major Scientific and Technological Inno-vation Projects in Luoyang(No.2201029A)+1 种基金Foundation Strengthening Plan Technical Field Fund(No.2021-JJ-0112)Shanghai Jiao Tong University Student Innovation Prac-tice Program(No.IPP24076).
文摘A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.
基金Founded by the National Natural Science Foundation of China(No.42002287)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUG2106335)。
文摘An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape.
文摘Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.
基金The National Natural Science Foundation of Chin(No.51305208)
文摘In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.
基金Project(50908234)supported by the National Natural Science Foundation of China
文摘As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease.
基金supported by the National Natural Science Foundation of China (No. 50768001)the Foundation of New Century Excellent Talents in University (No. NCET-04-0834)the Guangxi Natural Science Foundation (No. 0728026)
文摘A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.
基金Project(2007AA04Z408) supported by the National High-Tech Research and Development Program of ChinaProject(50735006) supported by the National Natural Science Foundation of China
文摘The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).
基金supported by the National Natural Science Foundation(Youth Project)of China,No.11102235a grant from the Key Project of Tianjin Science and Technology Support Plan in China,No.14ZCZDGX00500+2 种基金the Key Project of Natural Science Foundation of Tianjin City of China,No.12JCZDJC24100the Science and Technology Foundation Project of Tianjin Municipal Health Bureau of China,No.2013KZ134,2014KZ135the Seed Foundation Project of Affiliated Hospital of Logistics University of People’s Armed Police Force of China,No.FYM201432
文摘It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings con- firm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re- sults in a more obvious trend of cell differentiation into astrocytes.
基金financially supported by the National Nature Science Foundation of China (Grant Nos. 42022053 and 41877220)
文摘The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.
文摘Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspars, micas)(z86%), sulphides(pyrite)(z3%), carbonates(calcite, dolomite)(z10%) and organic kerogen(z1%). Three sets of measurements of the modulus of deformability were compared as determined in(i) nanoindentation tests with a constant indentation depth of 2 mm,(ii) micro-indentation tests with a constant indentation depth of 20 mm, and(iii) meso-compression tests with a constant displacement of 200 mm. These three experimental methods have already been validated in earlier studies. The main objective of this study is to demonstrate the influence of the scaling effect on the modulus of deformability of the material. Different frequency distributions of the modulus of deformability were obtained at the different sample scales:(i) in nano-indentation tests, the distribution was spread between 15 GPa and 90 GPa and contained one peak at34 GPa and another at 51 GPa;(ii) in the micro-indentation tests, the distribution was spread between 25 GPa and 60 GPa and displayed peaks at 26 GPa and 37 GPa; and(iii) in the meso-compression tests, a narrow frequency distribution was obtained, ranging from 25 GPa to 50 GPa and with a maximum at around 35 GPa.
基金This work has been financially supported by Ministry of Science and Higher Education in Poland as a part of the Project No.0513/SBAD.
文摘The two-stage gas boriding in N_(2)−H_(2)−BCl_(3)atmosphere was applied to producing a two-zoned borided layer on Nisil-alloy.The process was carried out at 910℃ for 2 h.The microstructure consisted of two zones differing in their phase composition.The outer layer contained only a mixture of nickel borides(Ni_(2)B,Ni_(3)B)only.The inner zone contained additionally nickel silicides(Ni_(2)Si,Ni_(3)Si)occurring together with nickel borides.The aim of this study was to determine the presence of nickel silicides on the mechanical properties of the borided layer produced on Ni-based alloy.The hardness and elastic modulus were measured using the nanoindenter with a Berkovich diamond tip under a load of 50 mN.The average values of indentation hardness(HI)and indentation elastic modulus(E_(I))obtained in the outer zone were respectively(16.32±1.03)GPa and(232±16.15)GPa.The presence of nickel silicides in the inner zone reduced the indentation hardness(6.8−12.54 GPa)and elastic modulus(111.79−153.99 GPa).The fracture toughness of the boride layers was investigated using a Vickers microindentation under a load of 0.981 N.It was confirmed that the presence of nickel silicides caused an increase in brittleness(by about 40%)of the gas-borided layer.
基金the financial support received from the National Science Foundation(Nos.NSF-CMMI 1760204 and 2131440)under the direction of Dr.Alexis Lewissupported by the State of North Carolina and the National Science Foundation(No.ECCS-1542015)support from the National Science Foundation(DMR1726294)。
文摘Al-xV alloys(x=2 at.%,5 at.%,10 at.%)with nanocrystalline structure and high solid solubility of V were produced in powder form by high-energy ball milling(HEBM).The alloy powders were consolidated by spark plasma sintering(SPS)employing a wide range of temperatures ranging from 200 to 400°C.The microstructure and solid solubility of V in Al were investigated using X-ray diffraction analysis,scanning electron microscope and transmission electron microscope.The microstructure was influenced by the SPS temperature and V content of the alloy.The alloys exhibited high solid solubility of V–six orders of magnitude higher than that in equilibrium state and grain size<50 nm at all the SPS temperatures.The formation of Al3V intermetallic was detected at 400℃.Formation of a V-lean phase and bimodal grain size was observed during SPS,which increased with the increase in SPS temperature.The hardness and elastic modulus,measured using nanoindentation,were significantly higher than commercial alloys.For example,Al-V alloy produced by SPS at 200℃ exhibited a hardness of 5.21 GPa along with elastic modulus of 96.21 GPa.The evolution of the microstructure and hardness with SPS temperatures has been discussed.
基金Funded by National Natural Science Foundation of China(Nos.U1134008 and 51302090)the Fundamental Research Funds for the Central Universities(No.2015ZJ0005)
文摘Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.
基金Sponsored by National Natural Foundtion of China(51134013,51171037)
文摘304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying (CGDS), and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 304 stain- less steel coating was measured using the three-point bend testing and the compound beam theory, and the other me- chanic parameters (such as the equivalent flexural rigidity and the moment of inertia of area) of the coatings were also calculated using this compound beam theory. It is found that the calculated results using the above methods are accu- rate and reliable. The elastic modulus value of the cold sprayed 304 stainless steel coating is 1. 179 X 105 MPa, and it is slightly lower than the 304 stainless steel plate (about 2 X 105 MPa). It indicates that the elastic modulus of the cold sprayed coatings was quite different from the comparable bulk materials. The main reason is that the pores and other defects are existed in the coatings, and the elastic modulus of the coatings also depends on varies parameters such as the feed stock particle size, porosity, and processing parameters.